
Scalability via Parallelization of OWL Reasoning

Thorsten Liebig, Andreas Steigmiller, and Olaf Noppens

Institute for Artificial Intelligence, Ulm University
89069 Ulm, Germany

firstname.lastname@uni-ulm.de

Abstract. Practical scalability of reasoning is an important premise
for the adoption of semantic technologies in a real-world setting. Many
highly effective optimizations for reasoning with expressive OWL on-
tologies have been invented and implemented over the last decades. This
paper describes our approach for concurrent computation of the nonde-
terministic choices inherent to the OWL tableau reasoning procedure for
SHIQ. We present the architecture of our parallel reasoner and briefly
discuss our prototypical implementation as well as future work.

Key words: OWL, Reasoning, Parallelization

1 Motivation

Tableaux-based algorithms have shown to be an adequate method in order to
implement OWL reasoning services for many practical use-cases of moderate
size. However, scalability of OWL reasoning is still an actual challenge of DL
research. Recent optimizations have shown significant increase in speed for an-
swering queries with respect to large volumes of individual data under specific
conditions. For instance, the KAON2 [1] system achieves excellent performance
for reasoning with large volumes of individuals by a clever transformation of
OWL into disjunctive Datalog unless there are cardinality restrictions. A recently
proposed variant of the tableau algorithm [2] has shown some speed-ups for at
least certain kind of ontologies within the HermiT reasoning system. SHEER,
a different, sound but incomplete approach [3] tries to reason with a condensed
version of the data but is not applicable in the presence of nominals. The CB
system implements a consequence driven approach [4] which is theoretically op-
timal at least for the Horn-fragment of SHIQ. The bottom line is that almost
all optimizations typically do come with some restriction in expressivity. This,
however, adds another critical dimension to developers of semantic applications
in that they need to hit the right language fragment which hopefully suits their
needs but also comes with a powerful reasoning engine.

On the other hand, modern CPU’s typically pool more than one processing
unit on a single chip. Recent consumer desktops even come with two quad-core
processors. However, research into reasoning engines which distribute their work
load in such a setting just has started ([5, 6]). Clearly, parallel computation
can only reduce processing time by a factor which is determined by the available

2 Thorsten Liebig, Andreas Steigmiller, and Olaf Noppens

processing units but has the potential of being applicable without any restriction
especially to the most “costly” cases.

On a high level there are at least two different approaches for parallelizing
reasoning:

Reasoner level. Refers to the approach where the system runs independent
instances of the reasoner procedure to solve some service task. For instance,
computation of the class hierarchy can be delegated to a set of reasoner
instances each of which check consecutively for subsumption of two classes.

Proof level. Aims at parallelizing the reasoning procedure itself by concurrent
computation of inherently independent proof steps.

Our approach follows the proof level strategy because of its sophisticated tun-
ing and optimization options. The reasoner level approach, by contrast, is a
naive kind of parallelization whose synchronization interval is more or less un-
predictable and therefore far from optimal. For instance, the efficient compu-
tation of the concept hierarchy should exploit previous subsumption results. In
the worst case the reasoner level approach has to compute some tests multiple
times due to inherent poor synchronization possibilities.

This paper describes how to parallelize the well-known tableau algorithm
used within reasoning systems such as RacerPro, FaCT++, or Pellet. Paral-
lelizing the nondeterministic choices within the standard DL tableau procedure
has several advantages. First of all, nondeterminism is inherent to the tableau
algorithm due to logical operators such as disjunction, at-most, or qualified car-
dinality restrictions. The generated alternatives from these expressions are com-
pletely independent of each other and can be computed concurrently. In case of
a positive result the other sibling threads can be aborted. The parallel compu-
tation of nondeterministic alternatives also makes the algorithm less dependent
on heuristics which typically choose the next alternative to process. A bad guess
within a sequential algorithm inevitably will lead to a performance penalty. A
parallel approach has the advantage of having better odds with respect to at
least one good guess.

In the following we present our framework for distributed tableaux proofs,
describe the status of our implementation and comment on first result as well
as discuss future work.

2 An Approach for Parallelizing DL Tableaux Proofs

Our approach aims at parallelizing the sequential algorithm proposed in [7] for
ALCNHR+ ABoxes with GCIs, enhanced with inverse roles and qualified car-
dinality restrictions – referred to as SHIQ – and extends our previous work
dealing with a parallel SHN reasoning system [8]

Every standard reasoning task can be reduced to a corresponding ABox un-
satisfiability problem. A tableau prover will then try to create a model for this
ABox. This is done by building up a tree (the tableau) of generic individuals

Scalability via Parallelization of OWL Reasoning 3

ai (the nodes of the tableau) by applying tableaux expansion rules. Tableaux
expansion rules either decompose concept expressions, add new individuals or
merge existing individuals.

2.1 Non-Determinism within SHIQ

The most obvious starting point for parallel proof processing are the nondeter-
ministic tableaux rules. Nondeterministic branching yields to multiple alterna-
tives, which can be seen as different possible ABoxes to continue reasoning with.
Within SHIQ there are three inherent nondeterministic rules:

The disjunction rule. If for an individual a the assertion a : C tD is in the
ABox, then there are two possible ABoxes to continue with: either with C
or with D.

The number restriction merge rule. The at-most restriction results in non-
determinism, if there are m r-successors in an ABox as well as an at-most
restriction (≤ n r) and it holds that m > n. In such a situation the m ex-
isting successors need to be merged to at most n r-successors. In the worst
case this requires to check for all possible m on n partitions.

The choose rule. For an ABox with the qualified number restriction (≤ n r.C)
the algorithm has to add either C or ¬C to any r-successor.

As there are no dependencies between the alternatives generated by the rules
above. Consequently they can be evaluated within parallel threads indepen-
dently.

2.2 Work Pool Architecture

In order to enable parallelism without recursively creating an overwhelming num-
ber of threads, we decided to adopt a work pool design as shown in Figure 1. A
work unit with a fixed number of work executors is generated at the start of the
tableau proof. This parametrizable number typically will be equal to or less than
the number of available processing units. These executors have synchronized read
access to a common queue of jobs (i.e. the ABoxes to evaluate). On start, the
tableaux root node (the original query ABox) is send from a superordinate work
distributor to a work unit (cf. step A of Fig. 1).

The unit’s work controller will add this work package to the units work queue
(step 1). The controller then starts it’s executors and one of them will fetch the
initial job (step 2). During processing the executors have concurrent read as
well as synchronized write access to two global caches (step 3). In case of a
nondeterministic rule application an executor will generate the necessary alter-
native ABoxes by extending the preceding ABox (step 4). This work package
is prioritized and submitted to the corresponding work queue. The next avail-
able executor will fetch the most prioritized work package from the pool. The
executors also report any proof relevant information such as satisfiability results
to the managing work controller, which then will control other executors when
appropriate (step 4).

4 Thorsten Liebig, Andreas Steigmiller, and Olaf Noppens

send work
A

 Work Unit Work Unit

4

1

2

Unsatisfiable-Cache

concurrent read/
synchronic write

finish /cancel/new

insert

take next work

Work-Priority-Queue

Work
Executor

Work
Executor

…

Satisfiable-Cache

receive work
send work

Work-Priority-Queue

concurrent read/
synchronic write

insert
Work-Priority-Queue

Work
Executor

Work
Executor

…

3

B

C

Work
Distributor

Work
Controller

Work
Controller

finish /cancel/new take next work

Fig. 1. Component interaction within work pool design of parallel reasoner.

The work controller itself gives notice to the work distributor in case

i) an ABox that represents a complete tableau is found, or

ii) no satisfiable alternative was found and there are no alternatives left to
process.

The work distributor of our system architecture is designed to be able to
coordinates more than one work unit. For instance, in case of an empty work
queue of one unit the distributor will level the queues of its units such that there
is no idle unit as long as there are work packages to process.

So far the design is tailored to a SMP (symmetric multi processor) architec-
ture, where all processing cores have access to one main memory. However, our
approach also allows for distribution over many computing systems. In such a
setting multiple work distributors can coordinate their work between each other.

An important decision in this design is the choice of the units work pool
organization. The commonly used queue is unsuitable in this setting as it pro-
motes a breadth-first style evaluation order. Thus, ABoxes which were created
earlier (generated by fewer applications of nondeterministic rules) are preferred,
and the discovery of complete ABoxes is delayed. The usage of a stack would
not reliably lead to a depth-first oriented processing order either, because several
executor share one pool and push new work package when the occur.

Scalability via Parallelization of OWL Reasoning 5

We therefore have chosen to use a priority queue in order to be able to
explicitly influence the processing order. We use a simple heuristic to control the
processing order:

– The priority of the original ABox is set to 0.
– ABoxes generated from an ABox with priority n are given the priority n+1.

This allows for a controlled depth-first oriented processing order. More sophis-
ticated heuristics or even some sort of A∗-algorithm would also be possible. For
example, FaCT++ also utilizes a priority queue for its ToDo list [9], weighting
tableaux rules with different priorities.

2.3 Implementation Status and Future Work

The architecture as described above has been implemented in C++ utilizing
the Qt libraries1. Qt allows for platform independent development and supports
parallel processing via dedicated thread libraries. So far we only have a reasoner
core in the sense that there is a SHIQ proof procedure only. However, we plan
to build a complete reasoning system by adding the well-known pre-processing
mechanisms (such as GCI absorption) and inference services (such as taxonomy
computation, basic asks, etc.). Initial benchmarks also have revealed encouraging
results which are planned to be published very soon.

References

1. Hustadt, U., Motik, B., Sattler, U.: Reasoning in Description Logics by a Reduction
to Disjunctive Datalog. Journal of Automated Reasoning (2007) To appear.

2. Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Logics.
Journal of Artificial Intelligence Research 36 (2009) 165–228

3. Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E., Srinivas, K.: The Summary
Abox: Cutting Ontologies Down to Size. In: Proceedings of the International Se-
mantic Web Conference (ISWC 2006), Athens, GA, USA (2006) 343–356

4. Kazakov, Y.: Consequence-Driven Reasoning for Horn SHIQ Ontologies. In: Pro-
ceedings of the 21st International Conference on Artificial Intelligence (IJCAI 2009).
(July 11-17 2009) 2040–2045

5. Schlicht, A., Stuckenschmidt, H.: Peer-to-peer Reasoning for Interlinked Ontologies.
In: Proc. of Int. Conference on Web Reasoning and Rule Systems. (2009)

6. Aslani, M., Haarslev, V.: Towards parallel classifcation of tboxes. In: Proc. of the
2010 International Workshop on Description Logics (DL-2010). (2010)

7. Haarslev, V., Möller, R.: Expressive ABox Reasoning with Number Restrictions,
Role Hierarchies, and Transitively Closed Roles. In: Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR2000). (2000) 273–284

8. Liebig, T., Müller, F.: Parallelizing Tableaux-Based Description Logic Reasoning.
In: Proc. of the Int. Workshop on Scalable Semantic Web Systems (SSWS). Volume
4806 of LNCS., Springer (2007) 1135–1144

9. Tsarkov, D., Horrocks, I., Patel-Schneider, P.F.: Optimising Terminological Rea-
soning for Expressive Description Logics. Journal of Automated Reasoning 39(3)
(2007) 277–316

1 http://qt.nokia.com/

