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Executive Summary

The classical entailment in logics isexplosive: any formula is a logical consequence of a
contradiction. Therefore, conclusions drawn from an inconsistent ontology by classical
inference may be completely meaningless. An inconsistency reasoner is one which is able
to return meaningful answers to queries, given an inconsistent ontology.

In this document, we overview reasoning with inconsistency in logics and AI, in par-
ticular, in paraconsistent logics and approximation reasoning. Furthermore, we examine
several typical examples and scenarios of inconsistency in the context of the Seman-
tic Web. We propose a general framework for reasoning with inconsistent ontologies.
We present the formal definitions of soundness, meaningfulness, local completeness,
and maximal completeness of an inconsistency reasoner. We propose and investigate a
pre-processing algorithm, discuss the strategies of inconsistency reasoning based on pre-
defined selection functions dealing with concept relevance.

In this document, we also present a prototype of a reasoner for Processing Inconsistent
Ontologies (PION), which is implemented in XDIG, an extended DIG Description Logic
Interface for Prolog. We also discuss the architecture of PION and show how the syntactic
relevance can be used for the prototype.
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Chapter 1

Introduction

The Semantic Web is characterized by scalability, distribution, and multi-authorship. All
these characteristics may introduce inconsistencies in the Semantic Web. Limiting lan-
guage expressivity with respect to negation (like RDF and other languages that are based
on negation as failure) can avoid inconsistencies to a certain extent. However, for specifi-
cations the expressivity of these languages is quite limited. In particular, OWL is already
capable of expressing inconsistencies.

There are two main ways to deal with inconsistency. One is to diagnose and repair
it when we encounter inconsistencies. In [17] Schlobach and Cornet propose a non-
standard reasoning service for debugging inconsistent terminologies. This is a possible
approach, if we are dealing with one ontology and we would like to improve this ontol-
ogy. Another approach is to simply avoid the inconsistency and to apply a non-standard
reasoning method to obtain meaningful answers. In this document, we will focus on the
latter, which is more suitable for web-based contexts. For example, in a typical Semantic
Web setting, one would be importing ontologies from other sources, making it impossible
to repair them, and the scale of the combined ontologies may be too large to make repairs
effective.

The classical entailment in logics isexplosive: any formula is a logical consequence
of a contradiction. Therefore, conclusions drawn from an inconsistent knowledge base
by classical inference may be completely meaningless. In this document, we propose
a general framework for reasoning with inconsistent ontologies. We investigate how an
inconsistency reasoner can be developed for the Semantic Web. The general task of an
inconsistency reasoner is: given an inconsistent ontology, returnmeaningfulanswers to
queries. In Chapter 3 we will provide a formal definition about meaningfulness.

Reasoning with inconsistency is a well-known topic in logics and AI. Many ap-
proaches have been proposed to deal with inconsistency [4, 5, 14, 12]. The development
of paraconsistent logics was initiated to challenge the ‘explosive’ problem of the stan-
dard logics. Paraconsistent logics [5] allow theories that are inconsistent but non-trivial.
There are many different paraconsistent logics. Most of them are defined on a seman-
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CHAPTER 1. INTRODUCTION 3

tics which allows both a letter and its negation to hold for an interpretation. Levesque’s
limited inference [13] allows the interpretation of a language in which a truth assignment
may map both a letterl and its negation¬l to true. Extending the idea of Levesque’s
limited inference, Schaerf and Cadoli [16] proposeS-3-entailment andS-1-entailment
for approximate reasoning with tractable results. The main idea of Schaerf and Cadoli’s
approach is to introduce a subsetS of the language, which can be used as a parameter
in their framework and allows their reasoning procedure to focus on a part of the theory
while the remaining part is ignored. However, how to construct and extend this subsetS
in specific scenarios is still an open question (the problem of finding a general optimal
strategy forS is known to be intractable).

Based on Schaerf and Cadoli’sS-3-entailment, Marquis and Porquet present a frame-
work for reasoning with inconsistency by introducing a family of resource-bounded para-
consistent inference relations [14]. In Marquis and Porquet’s approach, consistency is
restored by removing variables from the approximation setS instead of removing some
explicit beliefs from the belief base, like the standard approaches do in belief revision.
Their framework enables some forms of graded paraconsistency by explicit handling of
preferences over the approximation setS. In [14], Marquis and Porquet propose several
policies, e.g., the linear order policy and the lexicographic policy, for the preference han-
dling in paraconsistent reasoning. In [7], Chopra, Parikh, and Wassermann incorporate the
local change of belief revision and relevance sensitivity by means of Schaerf and Cadoli’s
approximate reasoning method, and show how relevance can be introduced for approxi-
mate reasoning in belief revision. Both approaches, Marquies’, and Chopra’s, depend on
syntactic selection procedures for extending the approximation set.

Our approach borrows some ideas from Schaerf and Cadoli’s approximation ap-
proach, Marquis and Porquet’s paraconsistent reasoning approach, and Chopra, Parikh,
and Wassermann’s relevance approach. However, our main idea is relativelysimple(It is
not a bad thing, isn’t it?): given a selection function, which can be defined on the syntactic
or semantic relevance, like those have been used in computational linguistics, we select
some consistent subtheory from an inconsistent ontology. Then we apply standard reason-
ing on the selected subtheory to find meaningful answers. If a satisfying answer cannot be
found, the relevance degree of the selection function is made less restrictive (see later sec-
tions for precise definitions of these notions) thereby extending the consistent subtheory
for further reasoning.

This document is organized as follows: Chapter 2 overviews inconsistency in the
Semantic Web by examining several typical examples and scenarios. Chapter 3 proposes
a general framework of reasoning with inconsistent ontologies, and examines how the
selection function can be developed, based on the syntactic relevance approach. Chapter
4 describes a prototype of PION. Chapter 5 discusses further work and concludes the
document.



Chapter 2

Inconsistency in the Semantic Web

In the Semantic Web, inconsistencies may easily occur, sometimes even in small ontolo-
gies. Here are several scenarios which may cause inconsistencies:1

2.1 Inconsistency by Mis-presentation of Default

When a knowledge engineer specifies an ontology statement, she/he has to check carefully
that the new statement is consistent, not only with respect to existing statements, but also
with respect to statements that may be added in the future, which of course may not
always be known at that moment. This makes it very difficult to maintain consistency in
ontology specifications. Just consider a situation in which a knowledge engineer wants to
create an ontology about animals:

bird v animal (Birds are animals),
bird v fly (Birds are flying animals).

Although the knowledge engineer may realize that ‘birds can fly’ is not generally
valid, he still wants to add it if he does not find any counterexample in the current knowl-
edge base, because flying is one of the main features of birds. An ontology about birds
without talking about flying is not satisfactory.

Later on, one may want to extend the ontology with the following statements:

1By inconsistency we mean that the set implies a contradiction, i.e., the setΣ |= ⊥, given an entailment
relation ‘|=’. It is usually calledincoherence. We continue using the term ‘inconsistency’, because it is
common practice in the ontology community.
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CHAPTER 2. INCONSISTENCY IN THE SEMANTIC WEB 5

eagle v bird (Eagles are birds),
penguin v bird (Penguins are birds),
penguin v ¬fly (Penguins are not flying animals).

The conceptpenguin in that ontology of birds is already unsatisfiable, because it im-
plies penguins can both fly and not fly. This would lead to an inconsistent ontology. One
may remove the statement ‘birds can fly’ from the existing ontology to restore consis-
tency. However, this approach is not reliable, because of the following reasons: a) It is
hard to check that the removal would not cause any significant information loss in the
current ontology, b) One may not have the authority to remove statements which have
been created in the current knowledge base, c) It may be difficult to know which part of
the existing ontology can be removed if the knowledge base is very large. One would
not blame the knowledge engineer for the creation of the statement ‘birds are flying an-
imals’ at the beginning without considering future extensions, because it is hard for the
knowledge engineer to do so.

One may argue that the current ontology languages and their counterparts in the Se-
mantic Web cannot be used to handle this kind of problems, because it requires non-
monotonic reasoning. The statementBirds can flyhas to be specified as a default state-
ment. The ontology language OWL cannot deal with default statements. We have to wait
for an extension of OWL to accommodate non-monotonic statements. It is painful that we
cannot talk about birds (that can fly) and penguins (that cannot fly) in the same ontology
specification. An alternative approach is to divide the inconsistent ontology specifica-
tion into multiple ontologies or modular ontologies to maintain their local consistency,
like one that states ‘birds can fly’, but doesn’t talk about penguins, and another one that
specifies penguins, but never mentions that ‘birds can fly’. However, the problem for this
approach is still the same as other ones. Again, an ontology about birds that cannot talk
about both ‘birds can fly’ and penguins is not satisfactory.

2.2 Inconsistency Caused by Polysemy

Polysemy refers to the concept of words with multiple meanings. One should have a
clear understanding of all the concepts when an ontology is formally specified. Here is an
example of an inconsistent ontology which is caused by polysemy:
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marriedWoman v woman (a married woman is a woman),
marriedWoman v ¬divorcee (a married woman is not a

divorcee),
divorcee v hadHusband u ¬hasHusband (a divorcee had a husband

and has no husband),
hasHusband v marriedWoman (hasHusband means married),
hadHusband v marriedWoman (hadHusband means married).

In the ontology specification above, the concepts ‘divorcee’ is unsatisfiable, because
of the misuse of the word ‘marriedWoman’. Therefore, one has to carefully check if there
is some misunderstanding with respect to concepts that have been used in the ontology,
which may become rather difficult when an ontology is large.

2.3 Inconsistency through Migration from Another For-
malism

When an ontology specification is migrated from other data sources, inconsistencies may
occur. As it has been found by Schlobach and Cornet in [17], the high number of unsat-
isfiable concepts in DL terminology for DICE is due to the fact that it has been created
by migration from a frame-based terminological system.2 In order to make the semantics
as explicit as possible, a very restrictive translation has been chosen to highlight as many
ambiguities as possible. In [17], Schlobach and Cornet show the following inconsistent
ontology specification:

brain v centralNervousSystem (a brain is a central nervous
system),

brain v bodyPart (a brain is a body part),
centralNervousSystem v nervousSystem (a central nervous system is a

nervous system),
bodyPart v ¬nervousSystem (a body part is not a nervous

system).

2.4 Inconsistency Caused by Multiple Sources

When a large ontology specification is generated from multiple sources, in paricular when
these sources are created by several authors, inconsistencies easily occur.

2DICE stands for ‘Diagnoses for Intensive Care Evaluation’.
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In [9], Hameed, Preece and Sleeman propose approaches of ontology reconciliation,
and discuss how consistency should be maintained and how inconsistency may be cre-
ated from multiple sources. According to [9], there are three possibilities for ontology
reconciliation: merging, aligning, or integrating. No matter whether a new ontology is
generated by merging or integrating multiple sources, in both cases general consistency
objectives are rather difficult to achieve.
Note that the above-mentioned categories (mis-presentation of default statements, poly-
semy, migration, multiple-sources) don’t exclude each other. When we examine an incon-
sistent ontology which is generated from multiple sources, we may find that it contains
several cases of polysemy, or some other inconsistency. The list above is also not ex-
haustive. There are many other cases that may cause the inconsistency, like inconsistency
caused by ambiguities, inconsistency caused by lacking global checking, etc. We do not
discuss a complete list in this document, but we have just aimed to show the urgency of
the problem of reasoning with inconsistent ontologies.



Chapter 3

Framework of Reasoning with
Inconsistent Ontologies

In this chapter we present our framework for reasoning with inconsistent ontologies. First
we will introduce some definitions and terminology for inconsistency reasoners, for in-
stance what do we mean with a ‘meaningful’ answers to a query. We continue with
identifying when to use the inconsistency reasoner. Finally a concrete strategy for in-
consistency processing and a selection function for an specific inconsistency reasoner is
discussed, and illustrated with two examples.

3.1 Formal Definitions

This document proposes a general framework for reasoning with inconsistent ontologies.
Therefore, we do not restrict ontology specifications to a particular language (although
OWL and its description logic are the languages we have in mind). In general, an ontol-
ogy language can be considered to be a set that is generated by a set of syntactic rules.
Thus, we can consider an ontology specification as a formula set. We use a non-classical
entailment for inconsistency reasoning. In the following, we use|= to denote the classi-
cal entailment, and use|≈ to denote some non-standard inference relation, which may be
parameterized to remove ambiguities.

In general, an ontology queryΣ can be expressed as ‘Σ |≈ φ?’, whereφ is a formula.
There are two standard answers to a query, either ‘yes’ (Σ |≈ φ), or ‘no’ (Σ 6|≈ φ). 1

For an inconsistency reasoner it is expected that is able to return meaningful answers
to queries, given an inconsistent ontology. In the following we propose several formal
definitions for inconsistency reasoners.

1In the next subsection, we will argue that it would be more suitable for an inconsistency reasoner to
extend the query answers to three possible answers: ‘accepted’ (Σ |≈ φ andΣ 6|≈ ¬φ), ‘rejected’ (Σ |≈ ¬φ
andΣ 6|≈ φ), or ‘undetermined’ (Σ 6|≈ φ andΣ 6|≈ ¬φ).

8



CHAPTER 3. FRAMEWORK OF REASONING WITH INCONSISTENT ONTOLOGIES9

Soundness:In the case of a consistent ontologyΣ, classical reasoning is sound, i.e., a
formulaφ deduced fromΣ holds in every model ofΣ. This definition is not prefer-
able for an inconsistent ontologyΣ as every formula follows from it using classical
entailment. However, often only a small part ofΣ has been incorrectly constructed
or modelled, while the remainder ofΣ is sound. This leads us to the following:
an inconsistency reasoner should be considered sound if the formulas that follow
from an inconsistent theoryΣ follow from a consistent subtheory ofΣ using clas-
sical reasoning. Therefore, we propose the following definition of soundness. An
inconsistency reasoner|≈ is sound if the following condition holds:

Σ |≈ φ⇒ (∃Σ′ ⊆ Σ)(Σ′ 6|= ⊥ andΣ′ |= φ).

In other words, the|≈-consequences must be justifiable on the basis of a consistent
subset of the theory. Note however, that in the previous definition the implication
shouldnot hold in the opposite direction. If the implication would also hold in
the opposite direction it would lead to an inconsistency reasoner, which returns
inconsistent answers. For example if{a,¬a} ⊆ Σ, then the inconsistency reasoner
would return that botha and¬a hold givenΣ, which is something we would like
to prevent. Hence, the inconsistency reasoner should not return answers that follow
from any consistent subset ofΣ, but fromspecifically chosensubsets ofΣ. This
‘specific selection of consistent subsets’ is part of the inconsistent reasoners strategy
and will be discussed in more detail in Section 3.2.2.

Meaningfulness: An answer given by an inconsistency reasoner is meaningful iff it is
consistent and sound. Namely, it requires not only the soundness condition, but also
the following condition:

Σ |≈ φ⇒ Σ 6|≈ ¬φ.
Inconsistency reasoning is said to be meaningful iff all of the answers are meaning-
ful.

Local Completeness: Because of inconsistencies, classical completeness is impossible.
We suggest the notion of local completeness: inconsistency reasoning is locally
complete with respect to a consistent subtheoryΣ′ iff for any formulaφ, the follow-
ing condition holds:

Σ′ |= φ⇒ Σ |≈ φ.

Since the condition can be represented as:

Σ 6|≈ φ⇒ Σ′ 6|= φ,

local completeness can be considered as a complement to the soundness property.
An answer to a queryΣ |≈ φ? is said to be locally complete with respect to a
consistent setΣ′ iff the following condition holds:

Σ′ |= φ⇒ Σ |≈ φ.
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Maximality : An inconsistency reasoner is maximal iff there is a maximal consistent
subtheory such that its consequence set is the same as the consequence set of the
inconsistency reasoner:

∃(Σ′ ⊆ Σ)((Σ′ 6|= ⊥)∧ (∀Σ′′ ⊃ Σ′∧Σ′′ ⊆ Σ)(Σ′′ |= ⊥)∧∀φ(Σ′ |= φ⇔ Σ |≈ φ)).

We use the same condition to define the maximality for an answer, like we do for
local completeness.

Local Soundness: An answer to a query ‘Σ |≈ φ?’ is said to be locally sound with
respect to a consistent setΣ′ ⊆ Σ, iff the following condition holds:

Σ |≈ φ⇒ Σ′ |= φ.

Namely, for any positive answer, it should be implied by the given consistent sub-
theoryΣ′ under the standard entailment.

From the definitions given above it follows that local soundness implies soundness and
meaningfulness. Moreover, it follows that maximal completeness implies local complete-
ness. Given a query, there might exist more than one maximal consistent subset. The same
also holds for local completeness. Such diffferent maximally consistent subsets may give
different |≈-consequences for a given queryφ. Therefore, arbitrary (maximal) consis-
tent subsets may not be very useful for the evaluation of a query by some inconsistency
reasoner. The consistent subsets should be chosen on structural or semantical grounds
indicating the relevance of the chosen subset with respect to some query. Functions that
will select specific subsets of an ontologyΣ will be discussed in more detail in Section
3.3.

3.2 Algorithms

3.2.1 Inconsistency Detection

With classical reasoning, a queryφ given an ontologyΣ can be expressed as an evaluation
of the consequence relationΣ |= φ. There are only two answers to that query: either ‘yes’
(Σ |= φ), or ‘no’ (Σ 6|= φ). A ‘yes’ answer means thatφ is a logical conclusion ofΣ. A
‘no’ answer, however, means thatφ cannot be deduced fromΣ, because we usually don’t
adopt the closed world assumption when using an ontology. Hence, a ‘no’ answer does not
imply that the negation ofφ holds given an ontologyΣ. For reasoning with inconsistent
ontologies, it is more suitable to use Belnap’s four valued logic [3] to distinguish the
following four epistemic states of the answers:

Definition 1
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• Over-determined:Σ |≈ φ andΣ |≈ ¬φ.

• Accepted:Σ |≈ φ andΣ 6|≈ ¬φ.

• Rejected:Σ 6|≈ φ andΣ |≈ ¬φ.

• Undetermined:Σ 6|≈ φ andΣ 6|≈ ¬φ.

To make sure reasoning is reliable when it is unclear if an ontology is consistent or
not, we can use the decision tree that is depicted in Figure 3.1. For a queryφ we test
both the consequencesΣ |= φ andΣ |= ¬φ using classical reasoning. In case different
answers are obtained, i.e., both ‘yes’ and ‘no’, the ontologyΣ must be consistent and the
answer toΣ |= φ can be returned. In case of two answers that are the same the ontology
is either incomplete, i.e., when both answers are ‘no’, or the ontology is inconsistent, i.e.,
when both answers are ‘yes’. When the ontology turns out to be incomplete, either an
‘undetermined’ answer can be returned or additional informationI can be gathered to
answer the queryΣ ∪ I |= φ, but this falls outside the scope of this document. When the
ontology turns out to be inconsistent some inconsistency reasoner can be called upon to
answer the queryΣ |≈ φ.

Σ |= φ?

?�� ��Σ |= φ
NoYes

?? �� ��Σ |= ¬φ
Yes No

? ?

�� ��Σ |= ¬φ
NoYes

??

Rejected:
Σ |= ¬φ

Accepted:
Σ |= φ

Inconsistent ontology:
Inconsistency reasoner

processing

Incomplete ontology:
Ontology extension

processing

Figure 3.1: Decision tree for obtaining reliable reasoning with an inonsistent ontology.

3.2.2 Inconsistency Reasoning

An inconsistency reasoner uses a selection function to determine which consistent subsets
of an inconsistent ontology should be considered in its reasoning process. The general
framework of Figure 3.1 is independent of the particular choice of selection function. The
selection function can either be based on a syntactic approach, like Chopra, Parikh, and
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Wassermann’s syntactic relevance [7], or based on semantic relevance like for example in
computational linguistics as in Wordnet [6].

In this document we will consider only monotonic selection functions:

Definition 2 A selection functionf is calledmonotonicif the consistent subsets that it
selectsS1, S2, S3, . . . monotonically increase or decrease, e.g.,S1 ⊆ S2 ⊆ S3 ⊆ · · · .

In particular we will restrict ourselves to monotonically increasing selection func-
tions. Monotonic selection functions have the advantage that they do not have to return
all subsets for consideration at the same time. If a queryΣ |≈ φ can be answered af-
ter considering some consistent subset of the ontologyΣ given by the selection function,
other subsets don’t have to be considered any more, becausethey will not change the
answer of the inconsistency reasoner.

Because of this property, in this document we always use an iterative approach. An
inconsistency reasoner that uses a monotone selection function will be called an inconsis-
tency reasoner that uses alinear extension strategy. A linear extension strategy is carried
out as shown in Figure 3.2. Given a queryΣ |≈ φ, the initial consistent subsetΣ′ is set
to be equal to the empty set∅. Then the selection function is called to return a con-
sistent subsetΣ′′ that extendsΣ′, i.e., Σ′ ⊂ Σ′′ ⊆ Σ. If the setΣ′′ does not exist, the
inconsistency reasoner returns the answer ‘undetermined’ to the query. If the setΣ′′ ex-
ists, a classical reasoner is used to check ifΣ′′ |= φ holds. If the answer is ‘yes’, the
inconsistency reasoner returns the ’accepted’ answerΣ′′ |= φ. If the answer is ‘no’, the
inconsistency reasoner further checks the negation of the queryΣ′′ |= ¬φ. If the answer
is ‘yes’, the inconsistency reasoner returns the ’rejected’ answerΣ |≈ ¬φ, otherwise the
whole process is repeated by calling the selection function for the next consistent subset
of Σ which extendsΣ′′.

It is clear that the linear extension strategy may result in too many ‘undetermined’ an-
swers to queries when the selection function picks the wrong sequence of monotonically
increasing subsets. It would therefore be useful to measure the succesfulness of (linear)
extension strategies. Notice, that this depends on the choice of the monotonic selection
function. In general, one should use an extension strategy that is not over-determined
and not undetermined. For the linear extension strategy, we can prove that the following
properties hold:

Proposition 3.2.1 (Linear Extension) An inconsistency reasoner using a linear exten-
sion strategy satisfies the following properties:

• never over-determined,

• may be undetermined,

• always sound,
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Figure 3.2: An inconsistency reasoner using the Linear Extension strategy.

• always meaningful,

• always locally complete,

• may not be maximal,

• always locally sound.

Therefore, an inconsistency reasoner using a linear extension strategy is useful to
create meaningful and sound answers to queries. It is always locally sound and locally
complete with respect to a consistent setΣ′ if the selection function always starts with the
consistent working setΣ′. Unfortunately it may not be maximal. We call this strategy a
linear one, because the selection function only follows one possible ‘extension chain’ for
creating consistent subsets. The advantages of the linear strategy is that the reasoner can
always focus on the current working setΣ′. The reasoner doesn’t need to keep track of the
extension chain. The disadvantage of the linear strategy is that it may lead to an inconsis-
tency reasoner that is undetermined. There exists other strategies which can improve the
linear extension approach, for example, by backtracking and heuristics evaluation.
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3.3 Selection Function

As we have pointed out in Section 3, the definition of the selection function should be
independent of the general procedure of the inconsistency processing (i.e., strategy). Fur-
ther research will focus on a formal development of selection functions. However, we
would like to point out that there exist several alternatives which can be used for an in-
consistency reasoner.

In [7], Chopra, Parikh, and Wassermann propose syntactic relevance to measure the
relationship between two formulas in belief sets, so that the relevance can be used to
guide the belief revision based on Schaerf and Cadoli’s method of approximate reasoning.
We will exploit their relevance measure as selection function and illustrate them on two
examples.

Definition 3 (Direct relevance andk-relevance [7]) Given a formula setΣ, two atoms
p, q are directly relevant, denoted byR(p, q,Σ) iff there is a formulaα ∈ Σ such that
p, q appear inα. A pair of atomsp andq are k-relevant with respect toΣ iff there exist
p1, p2, . . . , pk ∈ L such that:

• p, p1 are directly relevant;

• pi, pi+1 are directly relevant,i = 1, . . . , k − 1;

• pk, q are directly relevant.

The notions of relevance are based on propositional logics. However, ontology lan-
guages are usually written in some subset of first order logic. It would not be too difficult
to extend the ideas of relevance to those first-order logic-based languages by considering
an atomic formula in first-order logic as a primitive proposition in propositional logic. In
a sequel report, we investigate this extension of relevance definitions formally. However,
in this document, we just adapt the idea informally.

The following definition specialises the general definition of relevance for the case
whereφ is a formula in an ontology.

Given a formulaφ, we useI(φ), C(φ), R(φ) to denote the sets of individual names,
concept names, and relation names that appear in the formulaφ respectively. Two formula
φ, ψ are directly relevant iff there is a common name which appears both in formulaφ and
formulaψ, i.e.,I(φ) ∩ I(ψ) 6= ∅ ∨ C(φ) ∩ C(ψ) 6= ∅ ∨ R(φ) ∩ R(ψ) 6= ∅. A formula
φ is relevant to a formula setΣ′ iff there exists a formulaψ ∈ Σ′ such thatφ andψ are
directly relevant. We can similarly specialise the notion of k-relevance.

In inconsistency reasoning we can use syntactic relevance to define a selection func-
tion to extend the query ‘Σ |≈ φ?’ as follows: we start with the query formulaφ as a
starting point for the selection based on syntactic relevance. First we select the formulas
ψ ∈ Σ which are directly relevant toφ as a working set (i.e. k=1) to see whether or not
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they are sufficient to give an answer to the query. If the reasoning process can obtain an
answer to the query, it stops. Otherwise the selection function increases the relevance de-
gree by 1, thereby adding more formulas that are relevant to the current working set. The
selection procedure can be described as two working setsΣ′ andΣ′′ as shown in the linear
extension algorithm of Figure 3.2. At the beginning, the first working setΣ′ is defined
with respect to the queryφ and the formula setΣ as follows:

Σ′ = {ψ ∈ Σ | φ andψ are directly relevant}.

The second working set is based on the first working setΣ′ as follows:

Σ′′ = {ψ ∈ Σ | ψ is relevant toΣ′}.

Example bird ontology: Consider the bird ontology as defined in Section 2. We add a
factpenguin(tweety) (Tweety is a penguin) into the A-box of the ontology. Note that we
need that fact to state that the Penguin exists, namely, Penguin is not a bottom concept.
Let Σ be the formula set of the bird ontology. Then,Σ1 = Σ ∪ {penguin(tweety)}
is an inconsistent formula set. For the query ‘Σ |≈ fly(tweety)?’ (can Tweety fly?),
at the beginning, the selection function would select the formula setΣ′′ = {bird v
fly, penguin v ¬fly, penguin(tweety)}, based on the direction relevance. We have

Σ′′ |= ¬fly(tweety).

Therefore, the inconsistency reasoner returns a negative answer to the query. Namely, we
get the intended answer:

Σ1 |≈ ¬fly(tweety).

The same result would also be valid for the query ‘¬fly(tweety)?’ (Can Tweety not
fly?). For the queries on other birds, i.e., not about penguins, the reasoning process would
always give the intended results, because the statementpenguin v bird would not be
involved. Therefore, it would not lead to an inconsistency.

Example brain ontology: Consider the brain ontology example. Similarly, we add a
fact brain(a) into the A-box to state that the concept ‘brain’ is not empty. For the query
nervousSystem(a)? (Is the object ‘a’ an element of a nervous system?), based on the
direct relevance to the formulanervousSystem(a), the selection function will select the
following formula set at the beginning:

Σ3 = {centralNervousSystem v nervousSystem,
bodyPart v ¬nervousSystem, brain(a)}.

However, the query is undetermined on this selected set. The selection function will
extend the set with more formulae, of lower relevance (in this case k=2). Unfortunately,
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this would lead to all formulas in the example being selected, which is inconsistent, mak-
ing the query over-determined. To solve this problem, the selection function should se-
lect a consistent set larger thanΣ3, while still smaller than the entire theory. We call
the procedureover-determined processing. A possibility is to include not allk = 2-
relevant formula, but only make thek = 2 extension w.r.t. to some of the atoms ap-
pearing inΣ3. In particular, the following set (Σ4) is based on the extension of the atom
centralNervousSystem

Σ4 = {brain v centralNervousSystem} ∪ Σ3.

On this set, the answer to the query is positive, therefore, the reasoning process can stop
and return the accepted answernervousSystem(a).

The notions of direct relevance andk-relevance are a syntactic approach. As we have
shown above, the syntactic relevance approach can give intuitive results for most cases,
because we can consider the formulas that have been stated in the ontologies to be ex-
plicit beliefs/knowledge, and the formulas that can be derived from the existing formula
sets to be implicit beliefs/knowledge. We can count the relevance on the explicit knowl-
edge, instead of the implicit knowledge. More cases are needed to evaluate syntactic
relevance approaches for reasoning with inconsistent ontologies. The semantic relevance
approaches, which measure the relevance on a semantic level instead of a syntactic level,
can be used as alternatives of the selection functions for reasoning with inconsistent on-
tologies. We will investigate this in the near future.



Chapter 4

Prototype of a Reasoner with
Inconsistent Ontologies

4.1 Introduction

We have implemented the prototype of PION by using SWI-Prolog.1 SWI-Prolog is a free
software Prolog compiler. Being free, small and mostly standard compliant, SWI-Prolog
has become very popular for education and research. We are using a logic programming
language like Prolog as the tool for the implementation of the prototype, because the logic
programming language is convenient and powerful for symbolic processing and list pro-
cessing. For the implementation of PION, we have developed XDIG, an extended DIG
description logic interface package for Prolog[11], which provides a general infrastruc-
ture to build (hybrid) reasoning frameworks. A PION serves as a DL reasoner via its
own DIG interface. It is designed to be a simple API for a general reasoner with incon-
sistent ontologies. It supports DIG requests from other ontology applications or other
ontology and metadata management systems. Thus, the implementation of PION will be
independent from those particular applications or systems.

4.2 Architecture

The architecture of a PION is designed as an extension of the XDIG framework, and is
shown in Figure 4.1. A PION consists of the following components:

• DIG Server: The standard XDIG server acts as PION’s DIG server, which deals
with requests from other ontology applications. It not only supports standard DIG
requests, like ‘tell’ and ‘ask’, but also provides additional reasoning facilities, like
the identification of the reasoner or change of the selected selection functions.

1http://www.swi-prolog.org

17
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Figure 4.1: Architecture of PION
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• Main Control Component: The main control component performs the main pro-
cessing, like query analysis, query pre-processing, and the extension strategy, by
calling the selection function and interacting with the ontology repositories.

• Selection-Functions: The selection function component is an enhanced compo-
nent to XDIG, it defines the selection functions that may be used in the reasoning
process.

• DIG Client : PION’s DIG client is the standard DIG client, which calls external
DL reasoners that support the DIG interface to obtain the standard DL reasoning
capabilities.

• Ontology Repositories: The ontology repositories are used to store ontology state-
ments, provided by external ontology applications.

4.3 Implementation

PION is implemented by means of the XDIG package. XDIG provides a general infras-
tructure for the construction of hybrid reasoning frameworks and facilitates the specifica-
tion of user defined processing scenarios, to be specified in a ’mydig serverprocessing’
predicate. The predicate ’mydig serverprocessing’ serves as the main entry point of the
server; it handles both ’tell’ and ’ask’ requests. For a TELL request, PION stores the
data into its own local ontology repositories; for ASK requests, PION posts the stored
data in the repositories, after which it queries the external DL reasoner, similar to the
accumulation strategy as described in [11].

If the answers from the external reasoner do not report an error condition, the current
ontology is consistent and PION uses the answers from the external reasoner as its own
answer to the applications. Inconsistencies usually occur for instance queries, like ’Is
Tweety a flying animal?’. Satisfiablity and other queries would not result in an inconsis-
tency error. The current prototype version of PION only deals with instance inconsisten-
cies.

In case the current ontology is inconsistent, PION will start an inconsistency process-
ing scenario by launching a search strategy, which uses one of the selection functions in
the system to find a relevant and consistent subset of the current ontology and pass the
selected subset to the external standard DL reasoner.

4.4 Functionalities

The current version of the PION prototype (version 1.0) has the following characteristics:

• Strategy: linear extension strategy.
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• Selection Function: a syntactic relevance-based selection function.

• Over-determined processing: the selection function returns the first maximally
coherent subset of the over-determined set.

• Ontology and Query Languages: the internal data format is the DIG format, how-
ever, PION supports the DIG format as well as the OWL format for TELL requests
and the DIG format for ASK requests. Ontological data in the OWL format is
translated automatically by the XDIG component ’owl2dig’2.

4.5 Installation

1. Download: The PION package (version 1.0) is available from the SEKT website
or the VUA SEKT website:

http://wasp.cs.vu.nl/sekt/download/sekt341.zip

Unzip the PION package ’sekt341.zip’ into a directory. We will call the directory
PION ROOT .

2. Installation of SWI-Prolog : PION requires that SWI-Prolog (version 5.4.4 or
higher) has been installed on your computers. It can be downloaded from the SWI-
Prolog website:

http://www.swi-prolog.org

Install SWI-Prolog into a directory. We will call that directory
SWIPROLOG ROOT .

3. Installation of XDIG : You can find the zip file ’diglibrary.zip’, the XDIG
package which includes the PION libraries in the directoryPION ROOT .
Unzip the file ’diglibrary.zip’ into the SWI-Prolog library directory, i.e.,
SWIPROLOG ROOT/library.

4. Installation of Racer: PION requires Racer (version 1.7.14 or higher) as the exter-
nal DL reasoner. Other DL reasoners may work for PION if they support the DIG
DL interface, however, they have not yet been tested. Racer can be downloaded
from the Racer website:

http://www.sts.tu-harburg.de/˜r.f.moeller/racer/download.html

2However, note that the component ’owl2dig’ is still under development. The complete specification of
OWL DL is not yet supported .
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Figure 4.2: PION testbed.
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4.6 PION Testbed

The PION testbed ’piontest2.htm’ is a PION client with a graphical interface, which is
designed as a webpage. Therefore it can be launched from a web browser which supports
Javascript. A screenshot of the PION testbed, is shown in Figure4.2.

The current version of the PION testbed supports tests for which both the PION
server (with default port: 8001) and the external DL reasoner (with the default port:
8000) are running on the localhost. For a PION server which runs on a remote host,
change the host and port data in the ’pionmain2.htm’ file. Namely, replace the URL
’http://127.0.0.1:8001’ with another valid URL.

The PION testbed allows for the comparison of query results with PION and
without PION. Query results without PION are realized by a simply-forward server
’dig server simple8002.pl’, which deals with standard DIG requests and OWL support.
Before starting the PION test, make sure that the PION server, the simply-forward server
and the external DL reasoner (i.e. Racer) are running at the host with the correct ports.
The default port of the PION server port is ’8001’. The default port of the external DL
reasoner is ’8000’. The default port of the simply-forward server is ’8002’. The default
hostname of the PION server and the external DL reasoner is ’localhost’.

1. Launch Racer: Racer can be launched by the following command: racer -http
8000 Alternatively, click on the file ’racer8000.bat’ if the PION download package
includes the Racer reasoner.

2. Launch PION server: click on the file ’pion server.pl’ in the PION directory.

3. Launch the simply-forward server: click on the file ’dig server simple8002.pl’
on the PION directory.

The TELL and ASK request data can be copied into the TELL text area and the ASK
text area respectively. After that, you can click on the buttons ’Tell’ and ’Ask’ to make the
corresponding requests. The request data can also be posted from any application without
using the PION testbed. That is useful if the test data exceeds the text area limit.

As mentioned in Section 4.3, the current version of PION deals only with instance
inconsistencies. Answers from the external DL reasoner are either ’true’, ’false’ or ’error’
for instance queries. If the ontology is consistent, PION will return the answers directly
to the user. If the ontology is inconsistent, PION will start the inconsistency process-
ing. The answers from the inconsistency processing are either ’accepted’, ’rejected’ or
’undetermined’.

The PION testbed offers several typical examples for PION tests, which include the
bird example, the brain example, the married woman example, which are discussed in
Chapter 2. These examples are in the DIG format. The PION testbed also offers the mad
cow example and a variant example in OWL.
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Figure 4.3: Bird Example on PION testbed
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PION supports the comparison of query results with PION and query results without
PION, which are displayed in the left-bottom text area and the right-bottom text area
respectively.

A screenshot of the PION testbed, displaying the answers with PION and without
PION for the bird example, is shown in Figure 4.3.

The explanation of an accepted / rejected query answer can be obtained by clicking
on the ’withExplanation’ button before performing the ASK request. An explanation of
the answer is the selected consistent set from which the result is derived. A query answer
with the explanation of the bird example is shown as follows:

<response>
<rejected id="tweety fly">

<because>
<impliesc>

<catom name="bird"/>
<catom name="fly"/>

</impliesc>
<impliesc>

<catom name="penguin"/>
<not>

<catom name="fly"/>
</not>

</impliesc>
<instanceof>

<individual name="tweety"/>
<catom name="penguin"/>

</instanceof>
</because>

</rejected>
</response>



Chapter 5

Discussion and Conclusions

In this document, we proposed a general framework for reasoning with inconsistent on-
tologies. We have introduced several formal definitions, such as soundness, meaning-
fulness, local completeness, and maximal completeness for inconsistency reasoning. We
have proposed a pre-processing algorithm and an inconsistency reasoning strategy, based
on a linear extension strategy, and also have shown that a linear extension strategy is
useful for creating meaningful and sound answers to queries, although they may be unde-
termined and not always maximal.

We have presented a prototype of PION, and discussed the architecture and imple-
mentation issues of a PION system, which is based on the general framework that has
been proposed in this document. A PION testbed has been designed and implemented to
offer a tool for the data tests.

We have discussed how the selection function can be developed by means of a syntac-
tic relevance measure, and have shown several examples of how the syntactic relevance
approach can be used to obtain intuitive reasoning results in most cases. However, the
syntactic relevance based selection function does not always provide the intended results.
For example, for the mad cow example which is shown in the PION testbed, the query
’is the mad cow moo2 a vegetarian’ is accepted by PION. This counter-intuitive answer
results from the weakness of the syntactic relevance-based selection function, because it
always prefers a shorter relevance path. In the mad cow example, the path ’mad cow - cow
- vegetarian’ is shorter than the path ’mad cow - eat brain - eat bodypart - sheep are an-
imals - eat animal - NOT vegetarian’. Therefore, the syntactic relevance-based selection
function finds a consistent sub-theory by simply ignoring the fact ’sheep are animals’.

There are several alternative approaches to solve this kind of problems. One is to
introduce the locality requirement. Namely, the selection function starts with a certain
sub-theory which must always be selected. For example, the statement ’sheep are ani-
mals’ can be considered to be a knowledge statement which cannot be ignored. Another
approach is to add a shortcut path, like the path ’mad cow - eat animal - NOT vegetarian’
to achieve the relevance balance between the concepts ’vegetarian’ and ’NOT vegetarian’,

25
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as shown in the second mad cow example of the PION testbed. The latter approach can
be achieved automatically by accommodation of the semantic relevance from the user
queries. The hypothesis is that both concepts appear in a query more frequently, when
they are semantically more relevant. Therefore, from a semantical point of view, we can
add a relevance shortcut path between strong relevant concepts.

In future work, we will investigate formal properties of selection functions as well as
different approaches to selection functions (e.g. semantic-relevance based). We will also
investigate different extension strategies as alternatives to the linear extension strategy in
combination with different selection functions (also instance semantic relevance based),
and evaluate their performance characteristics.
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