
EU-IST Integrated Project (IP) IST-2003-506826 SEKT

SEKT: Semantically Enabled Knowledge Technologies

Reasoning with Multi-version
Ontologies

Zhisheng Huang and Heiner Stuckenschmidt
(Vrije Universiteit Amsterdam)

Abstract.
EU-IST Integrated Project (IP) IST-2003-506826 SEKT
Deliverable D3.5.1(WP3.5)
In this document, we propose a framework for reasoning with multi-version ontology, in which a
temporal logic is developed to serve as its semantic foundation. We show that the temporal logic
approach can provide a solid semantic foundation which can support various requirements on
multi-version ontology reasoning. We have implemented the prototype of MORE (Multi-version
Ontology REasoner), which is based on the proposed framework. In this document, we present
the design of the interfaces for MORE, and discuss its implementation.
Keyword list: ontology management, ontology versioning, ontology reasoning

Copyright c© 2005 Department of Artificial Intelligence, Vrije Universiteit Amsterdam

Document Id.
Project
Date
Distribution

SEKT/2005/D3.5.1/v1.0.0
SEKT EU-IST-2003-506826
June 30, 2005
public

SEKT Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the European
Communities as project number IST-2003-506826.

British Telecommunications plc.
Orion 5/12, Adastral Park
Ipswich IP5 3RE
UK
Tel: +44 1473 609583, Fax: +44 1473 609832
Contact person: John Davies
E-mail: john.nj.davies@bt.com

Empolis GmbH
Europaallee 10
67657 Kaiserslautern
Germany
Tel: +49 631 303 5540, Fax: +49 631 303 5507
Contact person: Ralph Traphöner
E-mail: ralph.traphoener@empolis.com

Jozef Stefan Institute
Jamova 39
1000 Ljubljana
Slovenia
Tel: +386 1 4773 778, Fax: +386 1 4251 038
Contact person: Marko Grobelnik
E-mail: marko.grobelnik@ijs.si

University of Karlsruhe , Institute AIFB
Englerstr. 28
D-76128 Karlsruhe
Germany
Tel: +49 721 608 6592, Fax: +49 721 608 6580
Contact person: York Sure
E-mail: sure@aifb.uni-karlsruhe.de

University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello St.
Sheffield S1 4DP
UK
Tel: +44 114 222 1891, Fax: +44 114 222 1810
Contact person: Hamish Cunningham
E-mail: hamish@dcs.shef.ac.uk

University of Innsbruck
Institute of Computer Science
Techikerstraße 13
6020 Innsbruck
Austria
Tel: +43 512 507 6475, Fax: +43 512 507 9872
Contact person: Jos de Bruijn
E-mail: jos.de-bruijn@deri.ie

Intelligent Software Components S.A.
Pedro de Valdivia, 10
28006 Madrid
Spain
Tel: +34 913 349 797, Fax: +49 34 913 349 799
Contact person: Richard Benjamins
E-mail: rbenjamins@isoco.com

Kea-pro GmbH
Tal
6464 Springen
Switzerland
Tel: +41 41 879 00, Fax: 41 41 879 00 13
Contact person: Tom B̈osser
E-mail: tb@keapro.net

Ontoprise GmbH
Amalienbadstr. 36
76227 Karlsruhe
Germany
Tel: +49 721 50980912, Fax: +49 721 50980911
Contact person: Hans-Peter Schnurr
E-mail: schnurr@ontoprise.de

Sirma AI EAD, Ontotext Lab
135 Tsarigradsko Shose
Sofia 1784
Bulgaria
Tel: +359 2 9768 303, Fax: +359 2 9768 311
Contact person: Atanas Kiryakov
E-mail: naso@sirma.bg

Vrije Universiteit Amsterdam (VUA)
Department of Computer Sciences
De Boelelaan 1081a
1081 HV Amsterdam
The Netherlands
Tel: +31 20 444 7731, Fax: +31 84 221 4294
Contact person: Frank van Harmelen
E-mail: frank.van.harmelen@cs.vu.nl

Universitat Autonoma de Barcelona
Edifici B, Campus de la UAB
08193 Bellaterra (Cerdanyola del Vallès)
Barcelona
Spain
Tel: +34 93 581 22 35, Fax: +34 93 581 29 88
Contact person: Pompeu Casanovas Romeu
E-mail: pompeu.casanovas@uab.es

Executive Summary

Multiple versions of an ontology can be considered as a temporal sequence of change
actions on an ontology.

In this document we will investigate how temporal logics serve as the semantic foun-
dation of multi-version ontology reasoning. We propose a framework of reasoning with
multi-version ontologies which is based on a temporal logic approach. We will show that
the temporal logic can provide a solid semantic foundation which serve as an extended
query language to detect the ontology changes and their consequences.

We have implemented the prototype of MORE (Multi-version Ontology REasoner),
which extends existing systems for querying Description Logic Ontologies with temporal
operators that support the maintenance of multiple versions of the same ontology. We
discuss the implementation of the prototype of MORE.

Contents

1 Introduction 3

2 Solved and Open Problems in Ontology Evolution 5
2.1 Ontology Versioning and Evolution . 6

2.1.1 Evolvability . 6
2.1.2 Integrity . 7
2.1.3 Compatibility . 7

2.2 Conclusions . 7

3 Multi-Version Reasoning: An Open Problem 9
3.1 Multi-Version Management . 10
3.2 Application Scenarios . 11
3.3 Outline of the Work . 13

4 A Temporal Logic for Multi-version Ontology Reasoning 14
4.1 Version Spaces and Temporal Models 15
4.2 Syntax and Semantics of LTLm . 16
4.3 Formal Properties . 17
4.4 LTLm as a Query Language . 18

4.4.1 Reasoning queries . 18
4.4.2 Retrieval Queries . 19

4.5 Making version-numbers explicit . 20
4.5.1 Relative version numbering . 20
4.5.2 Absolute version numbering . 20

5 Interfaces for Multi-version Ontology Reasoners 22
5.1 Query Language on a Single Ontology 22
5.2 TELL Language . 22
5.3 Ask Language . 26

5.3.1 Queries on Temporal Aspects 26
5.3.2 Ontology Comparison . 28
5.3.3 Version Retrieval . 31
5.3.4 Relative and Absolute Version Numbering 32

1

CONTENTS 2

5.4 Response Language . 33

6 Prototype of MORE 35
6.1 Implementation . 35
6.2 Functionalities . 36
6.3 Installation and Test Guide . 37
6.4 Experiments with MORE . 39

7 Discussion and Conclusions 42

Chapter 1

Introduction

When an ontology is changed, the ontology developers may want to keep the older ver-
sions of the ontology. Although maintaining multi-version ontologies increases the re-
source cost, it is still very useful because of the following benefits:

• Change Recovery. For ontology developers, the latest version of an ontology is
usually less stable than the previous ones, because the new changes have been in-
troduced on it, and those changes and their consequences have not yet been fully
recognized and evaluated. Maintaining the previous versions of the ontology would
allow the possibilities for the developers to withdraw or adjust the changes to avoid
unintended impacts.

• Compatibility Ontology users may still want to use an earlier version of the on-
tology despite the new changes, because they may consider that the functionalities
of the earlier version of the ontology are sufficient for their needs. Furthermore,
multi-version ontologies may have different resource requirement. Ontology users
may prefer an earlier version with less resource requirement to a newer version with
higher resource requirement.

The list above is not complete. We are going to discuss more benefits in the next
chapter. Those benefits justify to some extent that multi-version ontology management
and reasoning systems are really useful. The change recovery requires the system to
provide a facility to evaluate the consequences raising from ontology changes and a
tool to compare multi-versions of the ontology. Selecting a compatible version needs a
system which can support a query language for reasoning on a selected version of the
ontology. This requires a query language which can express the temporal aspects of the
ontology changes. Intuitively, multiple versions of an ontology can be considered as a
temporal sequence of change actions on an ontology. That serves as our departure point
in this document. In this document we will investigate how temporal logics serve as the
semantic foundation of multi-version ontology reasoning. We propose a framework of
reasoning with multi-version ontologies which is based on a temporal logic approach. We

3

CHAPTER 1. INTRODUCTION 4

will show that the temporal logic can provide a solid semantic foundation which serves
as an extended query language to detect the ontology changes and their consequences.We
have implemented the prototype of MORE (Multi-version Ontology REasoner), which
extends existing systems for querying Description Logic Ontologies with temporal
operators that support the maintenance of multiple versions of the same ontology. We
discuss the implementation of the prototype of MORE.

This document is organized as follows: Chapter 2 provides a brief survey on the ontol-
ogy evolution and versioning. Chapter 3 discusses the problem of multi-version ontology
reasoning. Chapter 4 presents a temporal logic for reasoning with multi-version ontolo-
gies, shows how the proposed temporal logic can serve as a query language for reasoning
with multi-version ontologies. Chapter 5 presents the interface design of MORE. Chapter
6 discusses the implementation issues of MORE, and Chapter 7 discusses further work,
and concludes the document.

Chapter 2

Solved and Open Problems in Ontology
Evolution

An important area related to the problem of ontology evolution is the area of database
schema evolution. In this work a number of basic problems and principles with respect
to evolution have been identified that are also applicable in the context of ontology
evolution. A basic distinction made in this work is between schema evolution and schema
versioning [Roddick1995]. Schema evolution deals with the problem of changing the
schema and making sure that the data is still accessible after the change. This includes
the propagation of changes to the underlying data in order to adapt them to the new
model [Banerjeeet al.1987]. Versioning, on the other hand aims at maintaining different
versions of the schema in parallel and to make sure that the data can be accessed using
any of the versions. This problem, however, can be reduced to evolving the schema and
keeping the old one as well.

In the following, we summarize some of the basic requirements for schema evolu-
tion that have been stated in connection with the problem of schema evolution for object
oriented databases that are most relevant for the problem of ontology evolution.

Evolvability The basic requirement in connection with schema evolution is the avail-
ability of a suitable apparatus for evolving the schema. In particular, there are two main
aspects of this apparatus. The first one is a set ofchange operationsthat can be used to
modify the schema. In schema evolution, these operations are often specified in terms of
an algebra that defines the semantics of individual and composed changes. The second
important part is astructure for representing changesmade to the schema. This repre-
sentation is used to store information about changes performed and provides the basis for
managing multiple versions of the schema, determine the impact of changes on the data
and to invert changes if necessary.

5

CHAPTER 2. SOLVED AND OPEN PROBLEMS IN ONTOLOGY EVOLUTION 6

Integrity An important aspect of schema evolution is to preserve the integrity of the
database during change. As a result of a change operation different kinds of conflicts
can appear that may harm integrity.Syntactic conflictsmay occur for example due to
multiply defined attribute names in the same class definition. Further,semantic conflicts
can appear if changes to the schema break up referential integrity or if the modification
of integrity constraints makes it incompatible with another one. In order to guarantee
integrity, schema evolution has to provide means for detecting and for resolving syntactic
and semantic conflicts that are the result of schema changes.

Compatibility While integrity only concerns the content of the database itself, another
important issue is to ensure the compatibility of the database with applications using it
even after the schema has changed. The literature mentions two aspects of compatibility:
downward compatibility means that systems that were based on the old version of the
schema can still use the database after the evolution.Upward compatibility means that
system that are built on top of the new schema can still access the old data. The question of
compatibility is tightly linked to versioning as the ability to access data through different
versions of the same schema ensures compatibility.

2.1 Ontology Versioning and Evolution

In principle, the issues discussed above are also relevant for the problem of ontology
evolution. In the following, we summarize recent work that addressed the different aspects
mentioned above for the special case of ontologies.

2.1.1 Evolvability

The evolvability of ontologies has been addressed by different researchers by defining
change operations and change representations for ontology languages. Change opera-
tions have been proposed for specific ontology languages. In particular change operations
have been defined for OKBC, OWL[Klein2004] and for the KAON ontology language
[Stojanovic2003]. All approaches distinguish between atomar and complex changes.
While atomar changes can be detected on the syntactic level and significantly different
between the different languages, complex changes define changes on the conceptual level
of the ontology (i.e. insert subclass). The latter type of changes is quite similar across dif-
ferent languages. Different ways of representing ontological changes have been proposed:
besides the obvious representation as a change log that contains a sequence of operations,
authors have proposed to represent changes in terms of mappings between two versions
of the same ontology [Noy and Musen2003]. The latter approach has the advantage that
they can be used to access data in different versions.

CHAPTER 2. SOLVED AND OPEN PROBLEMS IN ONTOLOGY EVOLUTION 7

2.1.2 Integrity

The problem of preserving integrity in the case of changes is also present for ontol-
ogy evolution. On the one hand, the problem is harder here as ontologies are often
encoded using a logical language where changes can quickly lead to logical inconsis-
tency that cannot directly be determined by looking at the change operation. On the
other hand, there are logical reasoners that can be used to detect inconsistencies both
within the ontology and with respect to instance data. As this kind of reasoning is
often costly, heuristic approaches for determining inconsistencies have been proposed
[Klein2004, Stuckenschmidt and Klein2003]. While deciding whether an ontology is
consistent or not can easily be done using existing technologies, repairing inconsisten-
cies in ontologies is an open problem. However, there is some preliminary work on di-
agnosing the reasons for an inconsistency which is prerequisite for a successful repair
[Schlobach and Cornet2003].

2.1.3 Compatibility

The problem of compatibility with applications that use an ontology has received little
attention so far. The diffuclty is that the impact of a change in the ontology on the function
of the system is hard to predict and strongly depends on the application that uses the
ontology. Part of the problem is the fact that ontologies are often not just used as a fixed
structure but as the basis for deductive reasoning. The functionality of the system often
depends on the result of this deduction process and unwanted behavior can occur as a
result of changes in the ontology. Some attempts have been made to characterize change
and evolution multiple versions on a semantic level [Heflin and Pan2004]. This work
provides the basis for analyzing compatibility which currently is an open problem.

2.2 Conclusions

We conclude that at the current state of research the problem of defining the basic appa-
ratus for performing ontology evolution in terms of change operations and representation
of changes is understood. Open questions with respect to ontology evolution mainly con-
cern the problem of dealing with integrity problems and with ensuring compatibility of
the ontology with existing applications. The basic problem that has to address in the con-
text of both of these topic lies in the logical nature of many ontology specifications. The
semantics of the underlying logic often causes side effects that are hard to predict because
they can occur at any place in the model and can only be detected by deductive reason-
ing. It is unlikely that syntactic approaches to evolution that only work on the syntactic
representation of the ontologies can deal with these problems. We therefore need meth-
ods that work at the semantic level and are aware of logical implications caused by the
changes. The formal characterization of ontology evolution provided by Heflin is a step in

CHAPTER 2. SOLVED AND OPEN PROBLEMS IN ONTOLOGY EVOLUTION 8

the right direction, but it does not provide any concrete methods for supporting evolution
that are necessary to resolve existing problems with respect to dealing with inconsistency
or determining compatibility.

Chapter 3

Multi-Version Reasoning: An Open
Problem

The aim of this work is to provide basic support for solving the open problems in
ontology evolution, in particular with respect to the problem of compatibility to existing
applications. As argued above, in order to support compatibility an analysis of changes
on a syntactic and structural level is not sufficient as the function of applications often
depends on the result of reasoning processes.

A semantic portal might for example provide a function that lists all people working
on a particular topic, say ontology evolution. This functionality can be provided by
retrieving all instances of the concept person that are linked to ontology evolution by
the works-on relation. Changes in the underlying ontology can significantly hamper this
functionality. If for instance the class researcher is defined to no longer be a subclass
of person, but of position, people classified as researchers will no longer be shown in
the list. Further, if it is decided to no longer represent the relation between topics by
the subclass relation but by a special subtopic-of relation for the sake of conceptual
correctness, people that defined to work on the topic ’multi-version reasoning’ will no
longer be in the list of people, because the new relation does not support inheritance
reasoning necessary to retrieve the corresponding instances.

Our goal is to provide ontology managers and users with a tool that helps to detect
effects like the one described above after an ontology has changed. Another more am-
bitious goal for the future is to also provide support for predicting such effects before
the ontology has actually been changed[Haaseet al.2005]. In the following sections, we
introduce the general idea of providing tool support for this purpose and identify relevant
use cases for the technology.

9

CHAPTER 3. MULTI-VERSION REASONING: AN OPEN PROBLEM 10

3.1 Multi-Version Management

As mentioned above, versioning is the key to compatibility as it enables each application
to use a version of the ontology that best fits its requirements. In the example given above,
the portal would just continue to use the old version of the ontology and would still be
able to provide the requested functionality. Our work therefore focuses on supporting the
management of different versions of the same ontology on a semantic level. In partic-
ular, we want top provide functionality for answering queries about knowledge derivable
from different versions. The corresponding approach has to provide two kinds of func-
tionalities

• Ask questions about statements derivable from a certain version.

• Ask for a version that allows to derive certain statements

While the first kind of functionality can be used to inspect a given version of the
ontology in order to find out whether important statements can or cannot be derived from
it, the second kinds of functionality helps to find a version that is compatible with a given
application because important statements can be derived from it.

Another issue is the scope of the approach, in particular the space of versions to
be considered. There are several possible scenarios. In most relevant cases, we are
concerned with a history of different versions of the same ontology where each version
replaces the previous one. We call this theretrospective approach. As a result, we
have a sequence of versions. There are also scenarios, in which different versions of the
ontology co-evolve. This is mostly the case in scenarios where the development of the
ontology is not controlled by an authority. In the following, we ignore this scenario which
is less relevant for professional ontology development. The other question is whether
future versions are considered to be part of the space of versions. Such future versions
can be characterized in terms of changes to an existing version. As mentioned above,
different proposals for change representations exist that could be used for this purpose.
We call this theprospectiveapproach. We believe that including future versions in the
scope of the management approach has many benefits as it allows us to answer ’what if’
questions that help the ontology engineer to better plan new versions.

In the following we describe application scenarios for the basic version management
approach that only considers existing versions as well as for the extended approach that
also considers future versions.

CHAPTER 3. MULTI-VERSION REASONING: AN OPEN PROBLEM 11

3.2 Application Scenarios

The development of our method is based on the assumption that different versions of an
ontology are managed on a central server. In a commercial setting, ontologies are nor-
mally created and maintained on a development server. Stable versions of the ontology
are moved to a production server which publishes the corresponding models and there-
fore plays the role of the central server. Further Compatangelo et al propose a blackboard
architecture [Compatangeloet al.2004] that also allows the centralized management of
different ontology versions in distributed environments and makes our approach applica-
ble also in the distributed setting. Based on this general assumption, there are a number
of quite relevant application scenarios for the version management technology sketched
above. In the following, we provide a number of use cases for Multi-version Reason-
ing including typical relevant questions about the relation between statements in different
versions of an ontology.

Use Case 1: Semantic Change Log

The ontology provider wants to inform the users of the ontology about changes in the
new version. The idea is that the new version of the ontology is added to the system
which automatically computes all changes with respect to a certain facts. A typical case
would be that all subsumption relations are checked. The system outputs a list of obsolete
subsumption relations and a list of new subsumption relations. Questions connected to
this use case are:

1. Are all facts from the old version still derivable ?

2. What facts are not derivable any more ?

3. What new facts are derivable from the new version ?

4. Which parts of the ontology are backward compatible and which not ?

Use Case 2: Compatibility Check

The user of an ontologies is informed about the release of a new version of his ontology.
He wants to check in a controlled setting whether the new version conforms to his appli-
cation needs. The user specifies a set of queries. Each query is accompanied by a list of
certain answers that the user wants to be in the result set. In a typical case, this query
could be for all instances of a concept. For each query, the system outputs a list of certain
answers that are not computed any more plus a set of answers that are results now but
have bot been results in the previous version. Typical questions connected to this use case
are:

CHAPTER 3. MULTI-VERSION REASONING: AN OPEN PROBLEM 12

1. What is the impact on the results of a certain query ?

2. Do we still get all the wanted answers for our data ?

3. Is the new ontology compatible with our data ?

Use Case 3: Version Selection

The user needs an ontology with particular properties for his application. He wants to
know which version of ontology fits his specific requirements best. For this purpose, the
user defines a number of statements that he wants to hold. The systems identifies the latest
version of the ontology in which the required statements hold.

1. Which is the last version that can be used to derive certain facts ?

2. Which is the latest version compatible with my data ?

3. Is there a newer version compatible with my data ?

4. which is the latest version of my ontology that allows me to make a certain change
without becoming inconsistent ?

Use Case 4: Evolution Planning

Based on customer feedback and requests, the ontology provider wants to determine use-
ful and harmful changes to plan the future evolution of the ontology. This use case con-
cerns the prospective aspect of multi-version reasoning and is out of the scope of this
deliverable. Questions that will have to be answered in this setting are the following.

1. Will this change make it possible to derive a certain fact ?

2. What change will make it possible to derive a certain fact ?

3. We need a certain statement to hold, is this still the case after a proposed change ?

4. Which changes are not allowed if I want this fact to be still derivable ?

5. will the ontology be backward compatible after this change (will all the derivable
facts still be derivable) ?

6. What changes can I make without becoming inconsistent/incompatible?

CHAPTER 3. MULTI-VERSION REASONING: AN OPEN PROBLEM 13

3.3 Outline of the Work

In this document, we make a contribution towards a general apparatus for supporting
multi-version management on the semantic level. We will do this by defining and
implementing a query language that is able to answer some of the relevant questions
about multiple versions of the same ontology as identified in the usage scenarios. Rather
than trying to directly support all of these queries, be identify a basic machinery that
provides the expressive power needed to provide the required functionality, but still needs
to be optimized for specific queries. Our solution is partial in the sense that it implements
a basic mechanism that does not necessarily cover all of the use cases and questions
mentioned above. This deliverable is devoted to the description of this basic mechanism.
The approach will be evaluated against the general use cases mentioned above as well as
with respect to the concrete use cases in the SEKT project. The results of this evaluation
will be reported in a follow-up deliverable. The relation of our work to other work on
consistent ontology evolution in SEKT are described in another upcoming deliverable
[Haaseet al.2005].

We base our method on a temporal logic over statements derivable from different
versions of the ontology. Queries concerning the content derivable from versions can be
stated in this temporal logic and are evaluated using model-checking techniques. In this
work we focus on the retrospective approach to multi-version analysis and only sketch
a possible extension to the prospective analysis. Concerning the representation of the
ontologies being analyzed, our approach will in principle be independent of a particular
language. The only requirement is the availability of a reasoner that computes logical
implications from a single ontology. In practice, we have designed and implemented our
methods to work on the basis of ontologies specified in OWL-DL.

With respect to derivable statements, we mainly consider subsumption between named
classes. We want to stress, however, that the approach presented is independent from the
representation of the ontologies and can easily be adapted to other representation lan-
guages. In the following we first introduce the temporal logic approach to managing mul-
tiple versions. Based on this, we define a minimal query language for multiple versions
and describe a prototypical implementation of the approach. We conclude with examples
of how the prototype can be used to answer queries about different versions of an example
ontology.

Chapter 4

A Temporal Logic for Multi-version
Ontology Reasoning

Temporal logics can be classified as two main classes with respect to two different
time models: linear time model and branching time model. The linear time logics
which express properties over a single sequence of states. This view is suitable
for the retrospective approach to multi-ontology reasoning where we assume the
existence of a sequence of versions. Branching time logics are express properties
across different sequences of states. This feature would be needed for the prospective
approach where we consider different possible sequences of changes in the future.
The linear temporal logicLTL is a typical temporal logic for modeling linear time,
whereas the computation tree logicCTL is a typical one for modeling branching time
[Rescher and Urquhart1971, van Benthem1995, Clarkeet al.1999].

Temporal logics are often future-oriented, because their operators are designed to be
ones which involve the future states. Typical operators are: the operatorFutureφ which
states that ’φ holds sometimes in the future with respect to the current state’, and the
operatorAlwaysfφ which states that ’φ always holds in the future with respect to the
current state’, and the operatorφUntilψ which states that ’φ always holds in the future
until ψ holds’. For a discrete time model, the operatorφ is introduced to state thatφ
holds at the next state with respect to the current state. For the retrospective reasoning,
we only need a temporal logic that only talks about the past. Namely, it is one which can
be used to compare the current state with some previous states in the past. It is natural to
design the following past-oriented operators, which correspond with the counterparts of
the future oriented temporal operators respectively:

• the previous operator states that a factφ holds just one state before the current state.

• the the sometimes-in-the past operator states that a factφ holds sometimes in the
past with respect to the current state.

14

CHAPTER 4. A TEMPORAL LOGIC FOR MULTI-VERSION ONTOLOGY REASONING15

• the always-in-the-past operator states thatφ holds always in the past with respect to
the current state.

In this document, we use a linear temporal logic, denoted asLTLm , which actually is
a restricted linear temporal logicLTL to past-oriented temporal operators.

4.1 Version Spaces and Temporal Models

In the following, we will define the formal semantics for the temporal operators by
introducing an entailment relation between a semantic model (i.e., multi-version on-
tologies) and a temporal formula. We consider a version of an ontology to be a state in
the semantic model. We do not restrict ontology specifications to a particular language
(although OWL and its description logics are the languages we have in mind). In general,
an ontology language can be considered to be a set of formulas that is generated by a set
of syntactic rules in a logical languageL.

We consider multi-versions of an ontology as a sequence of ontologies which are con-
nected with each other via change operations. Each of these ontologies has a unique name.
This is different from the work by [Heflin and Pan2004], who consider that an ontology
is one which contains the set of other ontologies which are backwards compatible with it.
We have the following definition.

Definition 1 (Version Space)A version spaceS over an ontology setOs is a set of on-
tology pairs, namely,S ⊆ Os×Os.

We use version spaces as a semantic model for our temporal logic, restricting our
investigation to version spaces that present a linear sequence of ontologies:

Definition 2 (Linear Version Space) A linear version spaceS on an ontology setOs is
a version space which is a finite sequence of ontologies

S = {〈o1, o2〉, 〈o2, o3〉, · · · , 〈on−1, on〉}

Alternatively we write the sequenceS as follows:

S = (o1, o2, · · · , on)

We useS(i) to refer the ith ontology oi in the space. For a version space
S = (o1, o2, · · · , on), We call the first ontologyS(1) in the space theinitial version of
the version space, and the last ontologyS(n) the latest version of the version space
respectively.

We introduce an ordering≺S with respect to a version spaceS as follows:

CHAPTER 4. A TEMPORAL LOGIC FOR MULTI-VERSION ONTOLOGY REASONING16

Definition 3 (Ordering on Version Space) o ≺S o′ iff o occurs prior too′ in the se-
quenceS, i.e.,S = (· · · , o, · · · , o′, · · ·).

Proposition 4.1.1 (Prior version and Linear Ordering)
the prior version relation≺S is a linear ordering, namely,≺S is
(i) irreflexive, i.e.,(o 6≺S o),
(ii) transitive, i.e.,o ≺S o

′ ando′ ≺S o
′′ ⇒ o ≺S o

′′,
(iii) asymmetry, i.e.,o ≺S o

′ ⇒ o′ 6≺S o,
(iv) comparable, i.e., eithero ≺S o

′ or o′ ≺S o,
for any ontologyo, o′, o′′.

4.2 Syntax and Semantics of LTLm

The LanguageL+ for the temporal logicLTLm can be defined as an extension to the
ontology languageL with Boolean operators and the temporal operators as follows:

q ∈ L ⇒ q ∈ L+
φ ∈ L+ ⇒ ¬φ ∈ L+
φ, ψ ∈ L+ ⇒ φ ∧ ψ ∈ L+
φ ∈ L+ ⇒ PreviousVersionφ ∈ L+
φ ∈ L+ ⇒ AllPriorVersionsφ ∈ L+
φ, ψ ∈ L+ ⇒ φSinceψ ∈ L+

Where the negation¬ and the conjunction∧ must be new symbols that do not ap-
pear in the languageL to avoid the ambiguities. Define the disjunction∨, the implication
→, and the bi-conditional↔ in terms of the conjunction and the negation as usual.
Define⊥ as a contradictoryφ ∧ ¬φ and> as a tautologyφ ∨ ¬φ respectively.

Using these basic operators, we can define some additional operators useful for rea-
soning about multiple versions. We define theSomePriorVersion operator in terms of
theAllPriorVersions operator as

SomePriorVersionφ =df ¬AllPriorVersions¬φ

The always-in-the-pastAllPriorVersions operator is one which does not consider the
current state. We can define a strong always-in-the-pastAllVersions operator as

AllVersionsφ =df φ ∧AllPriorVersionsφ,

which states that ’φ always holds in the past including the current state’.

Let S be a version space on an ontology setOs, ando be an ontology in the setOs,
we extend the entailment relation for the extended languageL+ as follows:

CHAPTER 4. A TEMPORAL LOGIC FOR MULTI-VERSION ONTOLOGY REASONING17

S, o |= q iff o |= q, for q ∈ L.
S, o |= ¬φ iff S, o 6|= φ.
S, o |= φ ∧ ψ iff S, o |= φ, ψ.
S, o |= PreviousVersionφ iff 〈o′, o〉 ∈ S such thatS, o′ |= φ.
S, o |= AllPriorVersionsφ iff for any o′ such thato′ ≺S o, S, o

′ |= φ.
S, o |= φSinceψ iff ∃(o1 . . . oi)(〈o1, o2〉, . . . , 〈oi−1, oi〉 ∈ S andoi = o)

such thatS, oj |= φ for 1 ≤ j ≤ i andS, o1 |= ψ.

For a linear version spaceS, we are in particular interested in the entailment relation
with respect to its latest version of the ontologyS(n) in the version spaceS. We useS |=
φ to denote thatS, S(n) |= φ. Model checking has been proved to be an efficient approach
for the evaluation of temporal logic formulas[Clarkeet al.1999]. In the implementation
of MORE, we are going to use the standard model checking algorithm for evaluation a
query in the temporal logicLTLm . Therefore, we do not need a complete axiomatization
for the logicLTLm in this document.

4.3 Formal Properties

The validity of a temporal formula in the logicLTLm is defined as a property which
is independent of any particularLTLm model and any state in the model. Namely, the
property is true in every state of anyLTLm model. We have the following definition:

Definition 4 (Validity) |= φ iff S, o |= φ for anyS, o.

Here is a list of formal properties in the logicLTLm:

Proposition 4.3.1 (Formal Properties of Temporal Operators)
(a) |= AllPriorVersionsφ→ SomePriorVersionφ.
(the always-in-the-past implies the sometimes-in-the-past.)

(b) |= PreviousVersionφ→ SomePriorVersionφ.
(the previous implies the sometimes-in-the-past.)

(c) |= PreviousVersionSomePriorVersionφ→ SomePriorVersionφ.
(the previous of the sometimes-in-the-past implies the sometimes-in-the-past.)

(d) |= SomePriorVersionSomePriorVersionφ→ SomePriorVersionφ.
(idempotent of the sometimes-in-the-past.)

(e) |= AllPriorVersionsAllPriorVersionsφ ∧ PreviousVersionφ →

CHAPTER 4. A TEMPORAL LOGIC FOR MULTI-VERSION ONTOLOGY REASONING18

AllPriorVersionsφ.
(quasi-idempotent of the always-in-the-past.)

(f) |= PreviousVersionPreviousVersionφ→ SomePriorVersionφ.
(the previous of the previous implies the sometimes-in-the-past.)

(g) |= φSinceψ → SomePriorVersionψ ∨ ψ.
(relation bewteen the since operator and the sometimes-in-the-past.)

(h) |= φSinceψ → φ.
(φ sinceψ implies thatφ holds in the current version.)

(i) |= φ ∧ ψ → φSinceψ.
(trivial case for the since operator.)

4.4 LTLm as a Query Language

There are two types of queries: reasoning queries and retrieval queries. The former con-
cerns with an answer either ‘yes’ or ‘no’, and the latter concerns an answer with a particu-
lar value, like a set of individuals which satisfy the query formula. Namely, the evaluation
of a a reasoning query is a decision problem, whereas the evaluation of a retrieval query
is a search problem. In this section, we are going to discuss how we can use the proposed
temporal logic to support both reasoning queries and retrieval queries.

4.4.1 Reasoning queries

Using theLTLm logic we can formulate reasoning queries over a sequence of ontologies
that correspond to the typical questions mentioned in Section3.

Are all facts still derivable? This question can be answered for individual facts using
reasoning queries. In particular, we can use the queryφ ∧PreviousVersionφ to deter-
mine for factsφ derivable from the previous version whether they still hold in the current
version. The same can be done for older versions by chaining thePreviousVersion
operator or by using the operatorAllVersions to ask whether formulas were always true
in past versions and are still true in the current one (AllVersionsφ).

What facts are not derivable any more? In a similar way, we can ask whether certain
facts are not true in the new version any more. This is of particular use for making sure
that unwanted consequences have been excluded in the new version. The corresponding

CHAPTER 4. A TEMPORAL LOGIC FOR MULTI-VERSION ONTOLOGY REASONING19

query is¬φ∧PreviousVersion φ. Using theAllPriorVersions operator, we can also
ask whether a fact that was always true in previous versions is not true anymore.

Are the facts are newly derivable from the new version? Reasoning queries can also
be used to determine whether a fact is new in the current version. As this is true if
it is not true in the previous version, we ca use the following query for checking this
φ∧¬PreviousVersionφ. We can also check whether a new fact never held in previous
versions using the following queryφ ∧ ¬SomePriorVersionφ.

What is the last version that can be used to derive certain facts? Using reasoning
queries we can check whether a fact holds in a particular version. As versions are arranged
in a linear order, we can move to a particular version using thePreviousVersion
operator. The queryPreviousVersionPreviousVersionφ for instance checks
whetherφ was true in the version before the previous one. The queryφSinceψ states
thatφ always holds sinceψ holds in a prior version.

A drawback of reasoning queries lies in the fact, that they can only check a property
for a certain specific fact. When managing a different versions of a large ontology, the
user will often not be interested in a particular fact, but ask about changes in general. This
specific functionality is provided by retrieval queries.

4.4.2 Retrieval Queries

Many Description Logic Reasoners support so-called retrieval queries that return a set of
concept names that satisfy a certain condition. For example, a children conceptc′ of a
conceptc, writtenchild(c, c′), is defined as one which is subsumed by the conceptc, and
there exists no other concepts between them. Namely,

child(c, c′) =df c
′ v c∧ 6 ∃c′′(c′ v c′′ ∧ c′′ v c ∧ c′′ 6= c ∧ c′′ 6= c′).

Thus, the set of new/obsolete/invariant children concepts of a concept on an ontology
o in the version spaceS is defined as follows:

newchildren(S, o, c) =df {c′|S, o |= child(c, c′) ∧ ¬PreviousVersion child(c, c′)}.

obsoletechildren(S, o, c) =df {c′|S, o |= ¬child(c, c′) ∧PreviousVersion child(c, c′)}.
invariantchildren(S, o, c) =df {c′|S, o |= child(c, c′) ∧PreviousVersion child(c, c′)}.

The same definitions can be extended into the cases like parent concepts, ancestor
concepts, descendant concept and equivalent concepts. Those query supports are suffi-
cient to evaluate the consequences of the ontology changes and the differences among
multi-version ontologies.

CHAPTER 4. A TEMPORAL LOGIC FOR MULTI-VERSION ONTOLOGY REASONING20

4.5 Making version-numbers explicit

Temporal logics allow us to talk about the temporal aspects without reference to a partic-
ular time point. For reasoning with multi-version ontologies, we can also talk about the
temporal aspects without mentioning a particular version name. We know that each state
in the temporal logic actually corresponds with a version of the ontology. It is not difficult
to translate the temporal statements into a statement which refers to an explicit version
number. Here are two approaches for it: relative version numbering and absolute version
numbering.

4.5.1 Relative version numbering

The proposed temporal logic is designed to be one for past-oriented. Therefore, it is quite
natural to design a version numbering which is relative to the current ontology in the
version space. We use the formulaVersion0φ to denote that the property holds in the
current version. Namely, we refer to the current version as the version0 in the version
space, and other states are used to refer to a version relative to the current version, written
asVersion−i as follows:

Version0φ =df φ.

Version(−i)φ =df PreviousVersion(Version(1−i)φ).

The formulaVersion−iφ can be read as “the propertyφ holds in the previousi-th
version”.

4.5.2 Absolute version numbering

Given a version spaceS with n ontologies on it, i.e.,|S| = n − 1. For the latest version
o = S(n), it is well reasonable to call thei-th ontologyS(i) in the version space the
versioni of S, denoted asVersioni,S. Namely, we can use the formulaVersioni,Sφ to
denote that the propertyφ holds in the versioni in the version spaceS. Thus, we can
define the absolute version statement in terms of a relative version statement as follows:

Version(i,S)φ =df Version(i−n)φ.

Explicit version numbering provides the basis for more concrete retrieval queries. In
particular, we now have the opportunity to compare the children of a conceptc in two
specific ontologiesi andj in the version spaceS. The corresponding definitions are the
following:

newChildren(S, c)i,j =df {c′|S |= Version(i,S) child(c, c
′)∧¬Version(j,S) child(c, c

′)}.

CHAPTER 4. A TEMPORAL LOGIC FOR MULTI-VERSION ONTOLOGY REASONING21

obsoleteChildren(S, c)i,j =df {c′|S |= ¬Version(i,S) child(c, c
′)∧Version(j,S) child(c, c

′)}.

invariantChildren(S, c)i,j =df {c′|S |= Version(i,S) child(c, c
′)∧Version(j,S) child(c, c

′)}.

Again, the same can be done for other predicates like parent-, ancestor or descendant
concepts.

Chapter 5

Interfaces for Multi-version Ontology
Reasoners

In this chapter we propose a simple API for Multi-version Ontology Reasoners
(MORE). The MORE interface is designed to be independent of any particular plat-
form and any application. Thus, we take the similar ideas from SOAP1 which
has been built message protocols using XML on top of HTTP, and the DIG De-
scription Logic Interface[Bechhoferet al.2003] in which TELL request and ASK re-
quests are designed for asserting and querying on ontologies. The DIG Descrip-
tion Logic Interface is supported by many description logic reasoning systems, like
Racer[Haarslev and M̈oller2001] and Fact[Horrocks1999]. Thus, it makes the implemen-
tation of the prototype of MORE convenient. We will discuss the details in Chapter 6.

5.1 Query Language on a Single Ontology

As discussed in Chapter 4, multi-version ontology reasoning languageL+ is designed to
be an extension to a language which is based on single ontology reasoning languageL.
We would not limit the single ontology language to any particular one. It can be the DIG
Description Logic Language and any other one which has been built message protocols
using XML, like RDF and OWL[McGuinness and van Harmelen2004].

5.2 TELL Language

In the MORE interface, the TELL language is designed to be a natural extension to the
TELL requests in the DIG interface for multi-version ontology reasoning. However, note

1http://www.w3.org/TR/soap/

22

CHAPTER 5. INTERFACES FOR MULTI-VERSION ONTOLOGY REASONERS 23

that the extension to the DIG interface would not hinder its independence of any particular
reasoning language.

In MORE, a TELL request contains a tellm (i.e., the tell request in MORE) element in
its body. The following shows an example of TELL request which contains an ontology
specification in the DIG format.

<?xml version="1.0" encoding="ISO-8859-1"?>
<tellm xmlns="http://wasp.cs.vu.nl/sekt/more/lang"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://wasp.cs.vu.nl/sekt/more/more.xsd">

<ontology name="bird1" language="dig">
<defconcept name="bird"/>
<defconcept name="animal"/>
<defconcept name="fly"/>
<defconcept name="eagle"/>
<impliesc>

<catom name="bird"/>
<catom name="animal"/>

</impliesc>
<impliesc>

<catom name="bird"/>
<catom name="fly"/>

</impliesc>
<impliesc>

<catom name="eagle"/>
<catom name="bird"/>

</impliesc>
</ontology>

</tellm>

A version space statement can be used to specify the ontology pairs in the version
space inside a tellm statement as shown below:

<versionSpace name="bird">
<pair ontology1="bird1" ontology2="bird2"/>
<pair ontology1="bird2" ontology2="bird3"/>

</versionSpace>

An ontology pair can be removed from a space by a pair removal statement inside a
tellm statement like this:

<versionSpace name="bird1">
<nopair ontology1="bird1-2" ontology2="bird1-3"/>
</versionSpace>

It is up to the users to maintain a version space to make it linear or networked. Thus,
this interface is general enough to cover different scenarios of ontology versioning.

CHAPTER 5. INTERFACES FOR MULTI-VERSION ONTOLOGY REASONERS 24

The tellm body can contain the data with the OWL format. The following is an exam-
ple of the tellm statement for OWL with a cluster statement:

<?xml version="1.0" encoding="ISO-8859-1"?>
<tellm xmlns="http://wasp.cs.vu.nl/sekt/more/lang"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://wasp.cs.vu.nl/sekt/more/more.xsd">

<ontology name="bird1-2" language="owl">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#">

<owl:Class rdf:ID="eagle">
<rdfs:subClassOf>

<owl:Class rdf:about="bird"/>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:ID="bird">
<rdfs:subClassOf rdf:resource="animal"/>

</owl:Class>
<owl:Class rdf:ID="bird">

<rdfs:subClassOf rdf:resource="fly"/>
</owl:Class>
<owl:Class rdf:ID="penguin">

<rdfs:subClassOf rdf:resource="bird"/>
<owl:disjointWith rdf:resource="fly"/>

</owl:Class>
</rdf:RDF>

</ontology>
<versionSpace name="bird1">

<pair ontology1="bird1-1" ontology2="bird1-2"/>
</versionSpace>

</tellm>

An ontology can be told by a statement which refers to its URL like this:

<ontology name="bird3" language="owl"
url="file:ontology/bird/bird3.owl"/>

We can also specify multi-version ontologies in one tellm request like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<tellm xmlns="http://wasp.cs.vu.nl/sekt/more/lang"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://wasp.cs.vu.nl/sekt/more/more.xsd">

<ontology name="bird1" language="dig">
<defconcept name="bird"/>
<defconcept name="animal"/>
<defconcept name="fly"/>
<defconcept name="eagle"/>

CHAPTER 5. INTERFACES FOR MULTI-VERSION ONTOLOGY REASONERS 25

<impliesc>
<catom name="bird"/>
<catom name="animal"/>

</impliesc>
<impliesc>

<catom name="bird"/>
<catom name="fly"/>

</impliesc>
<impliesc>

<catom name="eagle"/>
<catom name="bird"/>

</impliesc>
</ontology>
<ontology name="bird2" language="owl">

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#">

<owl:Class rdf:ID="eagle">
<rdfs:subClassOf>

<owl:Class rdf:about="bird"/>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:ID="bird">
<rdfs:subClassOf rdf:resource="animal"/>

</owl:Class>
<owl:Class rdf:ID="bird">

<rdfs:subClassOf rdf:resource="fly"/>
</owl:Class>
<owl:Class rdf:ID="penguin">

<rdfs:subClassOf rdf:resource="bird"/>
<owl:disjointWith rdf:resource="fly"/>

</owl:Class>
</rdf:RDF>
</ontology>
<ontology name="bird3" language="owl"

url="file:ontology/bird/bird3.owl"/>
<versionSpace name="bird">

<pair ontology1="bird1" ontology2="bird2"/>
<pair ontology1="bird2" ontology2="bird3"/>

</versionSpace>
</tellm>

The summary of the tellm statements and its semantics of the operation is shown in
Figure 5.1.

CHAPTER 5. INTERFACES FOR MULTI-VERSION ONTOLOGY REASONERS 26

Ontology <ontology name=o language=L> o := Ontology
Specification Ontology

</ontology>
Ontology <ontology name=o language=L o := URL
Specification by URL url=URL/>
Version Space <versionSpace name=S> S := S ∪ {〈o1, o2〉}
Specfication <pair ontology1=o1 ontology2=o2/>

</versionSpace>
Version Space <versionSpace name=S> S := S − {〈o1, o2〉}
Modification <nopair ontology1=o1 ontology2=o2/>

</versionSpace>

Figure 5.1: TELL language

5.3 Ask Language

Similarly, the ASK language in the MORE interface is designed to be a natural extension
to the ASK requests in the DIG interface for multi-version ontology reasoning. An ASK
request in the MORE is specified as an askm element which contains several querym
statements which specify queries with respect to an ontology in a version space, like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<askm xmlns="http://wasp.cs.vu.nl/sekt/more/lang"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://wasp.cs.vu.nl/sekt/more/more.xsd">

<querym id="sat bird on bird1-1"
versionSpace="bird1" ontology="bird1-1">

<query>
<satisfiable>

<catom name="bird"/>
</satisfiable>

</query>
</querym>

</askm>

The querym statement can contain a query which corresponds with a temporal logic
formula or other query statements which are encoded in XML format in MORE. The
variants of the querym statement and its semantics is shown in Figure 5.2.

5.3.1 Queries on Temporal Aspects

The temporal logic languageLTLm can be encoded in XML, which is shown in Figure
5.3.

CHAPTER 5. INTERFACES FOR MULTI-VERSION ONTOLOGY REASONERS 27

Query on Ontology <querym id=ID versionSpace=S ontology=o> S, o |= Query
with versionSpace Query

</querym>
Query on versionSpace <querym id=ID versionSpace=S> S |= Query

Query
</querym>

Figure 5.2: Queries on Version Space

Query on <query> q
Single Ontology Atomic Query

</query>
Negation <not> Q</not> ¬φ
Conjunction <and> Q1 · · · Qn</and> φ1 ∧ · · · ∧ φn

Disjunction <or> Q1 · · · Qn</or> φ1 ∨ · · · ∨ φn

Implication <implies> Q1 Q2</implies> φ1 → φ2

If and only if <iff> Q1 Q2</iff> φ1 ↔ φ2

Previous <previousVersion> Q</previousVersion> PreviousVersionφ
Always <allPriorVersions> Q</allPriorVersions> AllPriorVersionsφ
in the Past
Sometimes <somePriorVersion> Q</somePriorVersion> SomePriorVersionφ
in the Past
Always <allVersions> Q</allVersions> AllVersionsφ
Since <since> Q1Q2 </since> φ1Sinceφ2

Figure 5.3: Query Language on Multi-version Ontologies

CHAPTER 5. INTERFACES FOR MULTI-VERSION ONTOLOGY REASONERS 28

satisfiability <satisfiable> C</satisfiable> C is satisfiable
subsumption <subsumes> C1 C2 < /subsumes> C2 v C1

disjoint <disjoint> C1 C2 < /disjoint> C2 u C1 = ⊥
instance <instance> I C < /instance> C(I)

Figure 5.4: Atomic Query in DIG1.0

An atomic query in MORE is any query in DIG which can return a Boolean value,
i.e.,true, orfalse. Figure 5.4 shows a list of query patterns in DIG1.0 which can be used
as an atomic query in MORE.

Below there is an example of the query which corresponds with the following formula
in the temporal logic:

S |= satisfiable(penguin) ∧PreviousVersionsatisfiable(penguin).

<?xml version="1.0" encoding="ISO-8859-1"?>
<askm xmlns="http://wasp.cs.vu.nl/sekt/more/lang"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://wasp.cs.vu.nl/sekt/more/more.xsd">

<querym id="querym example2" versionSpace="bird1">
<and>

<query>
<satisfiable>

<catom name="penguin"/>
</satisfiable>

</query>
<previous>

<satisfiable>
<catom name="penguin"/>

</satisfiable>
</previous>

</and>
</querym>
</askm>

5.3.2 Ontology Comparison

Queries on ontology comparison like those on new/obsolete/invariant concept relations,
can be expressed as the corresponding XML-encoded statements. Here is an example of
queries on what are new children concept relations with respect to the concept ’bird’ on
the ontology ’bird2’, compared with the ontology ’bird1’:

<?xml version="1.0" encoding= "ISO-8859-1" ?>
<askm xmlns="http://wasp.cs.vu.nl/sekt/more/lang"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

CHAPTER 5. INTERFACES FOR MULTI-VERSION ONTOLOGY REASONERS 29

xsi:schemaLocation="http://wasp.cs.vu.nl/sekt/more/more.xsd">
<querym id="new child concepts of the concept bird on bird2 compared bird1"

versionSpace="bird" ontology="bird2">
<newOnConcept concept="bird" type="children"

comparedOntology="bird1"/>
</querym>
</askm>

If the query does not contain a specific ontology to make comparisons with, the on-
tology will be compared to with the previous one (in the linear sequence of the version
space).

<querym id="new child concepts of the concept bird on bird2 on versionSpace"
versionSpace="bird" ontology="bird2">

<newOnConcept concept="bird" type="children"/>
</querym>

The compared concepts can be specified as a list in the query as shown below:

<querym id="new child concepts for a concept list on bird2"
versionSpace="bird" ontology="bird2">

<newOnConcept type="children">
<catom name="bird"/>
<catom name="fly"/>

</newOnConcept>
</querym>

If there is no particular concept stated, that means the query should be carried on all
concepts in the ontology:

<querym id="new child concepts on bird2"
versionSpace="bird" ontology="bird2">

<newOnConcept type="children"/>
</querym>

If there is no stated type in the query, that means the query should be carried on all
concept relations, namely, on children/parents/ancestors/descendants concept relations2.

<querym id="new child concepts on bird2"
versionSpace="bird" ontology="bird2">

<newOnConcept/>
</querym>

Obsolete/Invariant concept relations can be stated in queries similarly:

<querym id="obsolete child concepts on bird2"
versionSpace="bird" ontology="bird2">

2However, note that it costs much time for a large scale ontology.

CHAPTER 5. INTERFACES FOR MULTI-VERSION ONTOLOGY REASONERS 30

New concept <querym id=ID versionSpace=S ontology=o> newType(S, o, c)
<newOnConcept concept=c type=Type/>

</querym>
Obsolete <querym id=ID versionSpace=S ontology=o> obsoleteType(S, o, c)
concept <obsoleteOnConcept concept=c type=Type/>

</querym>
Invariant <querym id=ID versionSpace=S ontology=o> obsoleteType(S, o, c)
concept <invariantOnConcept concept=c type=Type/>

</querym>
New concept <querym id=ID versionSpace=S ontology=o> newType(S, o, c)
on all <newOnConcept type=Type/> for all c
concepts </querym>
Obsolete concept <querym id=ID versionSpace=S ontology=o> obsoleteType(S, o, c)
on all <obsoleteOnConcept type=Type/> for all c
concepts </querym>
Invariant <querym id=ID versionSpace=S ontology=o> invariantType(S, o, c)
concept on <invariantOnConcept type=Type/> for all c
all concepts </querym>
New concept <querym id=ID versionSpace=S ontology=o> newtype(S, o, c)
without <invariantOnConcept/> for all c and
a type </querym> for all type
Obsolete <querym id=ID versionSpace=S ontology=o> obsoletetype(S, o, c)
concept without <obsoleteOnConcept/> for all c and
a type </querym> for all type
Invariant <querym id=ID versionSpace=S ontology=o> invarianttype(S, o, c)
concept without <invariantOnConcept/> for all c and
a type </querym> for all type
New concept <querym id=ID versionSpace=S ontology=o> New type concept
compared with <newOnConcept concept=c type=Type of c in o, compared
arbitrary comparedOntology=o′/> with o′

ontology </querym>
New concept <querym id=ID versionSpace=S ontology=o> newType(S, o, c)
relation for <newOnConcept type=Type> for all c ∈
a concept list <catom name =c1> {c1, · · · , cn}

· · ·
<catom name =cn/>
< /newOnConcept>

</querym>

wheretype =children/parents/ancestors/descendants

Figure 5.5: Query patterns on concept comparison

CHAPTER 5. INTERFACES FOR MULTI-VERSION ONTOLOGY REASONERS 31

<obsoleteOnConcept/>
</querym>
<querym id="invariant child concepts on bird2"

versionSpace="bird" ontology="bird2">
<invariantOnConcept/>
</querym>

Some typical query patterns on ontology concept comparison are shown in Figure 5.5

5.3.3 Version Retrieval

A version retrieval query is an element ’ontologies’ which contains a temporal formula in
its body. The following is an example of a version retrieval query which asks for a set of
ontologieso in the versionspacebird such thatbird, o |= satisfiable(fly):

<askm xmlns="http://wasp.cs.vu.nl/sekt/more/lang"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://wasp.cs.vu.nl/sekt/more/more.xsd">
<querym id="version retrieval for satisfiable fly"

versionSpace="bird">
<ontologies>

<query>
<satisfiable>

<catom name="fly"/>
</satisfiable>

</query>
</ontologies>

</querym>
</askm>

If an ontologyo′ is stated in a querym, that means that the query asks for a set of the
ontologieso which are prior too′ or o = o′ such that the temporal formulaφ holds in the
ontologyo.

<askm xmlns="http://wasp.cs.vu.nl/sekt/more/lang"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://wasp.cs.vu.nl/sekt/more/more.xsd">
<querym id="version retrieval for satisfiable

fly before ontology bird3"
versionSpace="bird" ontology="bird3">

<ontologies>
<query>

<satisfiable>
<catom name="fly"/>

</satisfiable>
</query>

</ontologies>
</querym>
</askm>

CHAPTER 5. INTERFACES FOR MULTI-VERSION ONTOLOGY REASONERS 32

A response to a version retrieval query can be like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<response>

<ontologySet id="version retrieval for
satisfiable fly before ontology bird3">

<ontology name="bird3"/>
<ontology name="bird2"/>

</ontologySet>
</response>

5.3.4 Relative and Absolute Version Numbering

A temporal reasoning query can be stated with a relative version number or an absolute
version numberN . If N > 0, that means that the query is one with an absolute verison
number. IfN < 0, the query is one with a relative version number (with respect to the
current ontology). IfN = 0, the temporal reasoning query will be evaluated with respect
to the current ontologyo. The following is an example with two queries, a query with a
relative version number and a query with an absolute version number:

<askm xmlns="http://wasp.cs.vu.nl/sekt/more/lang"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://wasp.cs.vu.nl/sekt/more/more.xsd">
<querym id="sat penguin on bird2 relative version -1"

versionSpace="bird" ontology="bird2">
<version number="-1">

<query>
<satisfiable>

<catom name="penguin"/>
</satisfiable>

</query>
</version>

</querym>
<querym id="sat penguin absolute version 3"

versionSpace="bird">
<version number="3">

<query>
<satisfiable>

<catom name="penguin"/>
</satisfiable>

</query>
</version>

</querym>
</askm>

The query patterns on version retrieval and version numbering are shown in Figure
5.6.

CHAPTER 5. INTERFACES FOR MULTI-VERSION ONTOLOGY REASONERS 33

Version <querym id=ID versionSpace=S>
Retrieval <ontologies>

Query {o|S, o |= Query}
</ontologies>
</querym>

Relative <querym id=ID versionSpace=S ontology=o>
Version <version number=N> S, o |= VersionNQuery
Numbering Query where

</version> N < 0
</querym>

Absolute <querym id=ID versionSpace=S>
Version <version number=N> S |= Version(N,S)Query
Numbering Query where

</version> N > 0
</querym>

Figure 5.6: Query patterns on version retrieval and version numbering

5.4 Response Language

The response to anaskm request contains in its body aresponse element. Each response
has an attributeid which corresponds to the identifier of a submitted query, like those in
the DIG response format.

This is an exmaple of the response which returns a boolean value to a query:

<?xml version="1.0" encoding="ISO-8859-1"?>
<response>
<true id="sat bird on bird1 (true)"/>
</response>

The answer in a response to an ontology comparison queryquerym contains in its
body ananswer element which states the comparison results, like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<response>
<answer id="new on concept for a concept list on bird2">

<conceptRelated concept="bird">
<descendants>

<catom name="penguin"/>
</descendants>

</conceptRelated>
<conceptRelated concept="fly">

<descendants>
<catom name="penguin"/>

CHAPTER 5. INTERFACES FOR MULTI-VERSION ONTOLOGY REASONERS 34

Error <error id=ID/> error
Boolean <true id=ID/> true
Boolean <false id=ID/> false
Concept Comparison <answer id=ID>
Non-empty Result <conceptRelated concept=C1 > type(C1, C1,1)∧

<type> C1,1, · · · , C1,n1 </type> · · · ∧ type(C1, C1,n1)
</conceptRelated> ∧

· · · · · ·
<conceptRelated concept=Cm > ∧type(C1, Cm,1)
<type> Cm,1, · · · , Cm,nm </type> ∧ · · · type(C1, Cm,nm)

</conceptRelated>
</answer>

Concept Comparison <answer id=ID> ∅
Empty Result NIL </answer>
Version Retrieval <ontologySet id=ID>

<ontology name=O1>
· · · {O1, · · · , On}

<ontology name=On>
</ontologySet>

Figure 5.7: Response Language in MORE

</descendants>
</conceptRelated>

</answer>
</response>

Figure 5.7 shows a list of the response pattern in MORE.

Chapter 6

Prototype of MORE

6.1 Implementation

We implemented a prototypical reasoner for multi-version ontologies called MORE
based on the approach described above. The system is implemented as an intelligent
interface between an application and state-of-the art description logic reasoners and
provides server-side functionality in terms of an XML-based interface for uploading
different versions of an ontology and posing queries to these versions. Requests to
the server are analyzed by the main control component that also transforms queries
into the underlying temporal logic queries if necessary. The main control element also
interacts with the ontology repository and ensures that the reasoning components are
provided with the necessary information and coordinates the information flow between
the reasoning components. The actual reasoning is done by model checking components
for testing temporal logic formulas that uses the results of an external description logic
reasoner for answering queries about derivable facts in a certain version.

An overview of the MORE architecture is shown in Figure 6.1. It has the following
components:

• MORE Server: The MORE server acts as a server which deals with requests from
other ontology applications.

• Main Control Component: The main control component performs the main pro-
cessing, like query analysis, query pre-processing, and interacting with the ontology
repositories.

• Model Checking Component: the model checking component provides the facili-
ties to evaluate the queries and the system specification.

• DIG Client : MORE’s DIG client is the standard XDIG client, which calls external

35

CHAPTER 6. PROTOTYPE OF MORE 36

Figure 6.1: Architecture of MORE.

DL reasoners which support the DIG interface to obtain the standard DL reasoning
capabilities.

• Ontology Repositories: The ontology repositories are used to store the multi-
version ontologies and other system specifications.

The MORE prototype is implemented in Prolog and uses the XDIG interface
[Huang and Visser2004], an extended DIG description logic interface for Prolog1. MORE
is designed to be a simple API for a general reasoner with multi-version ontologies. It sup-
ports extended DIG requests from other ontology applications or other ontology and meta-
data management systems and supports multiple ontology languages, including OWL and
DIG[Bechhoferet al.2003]2. This means that MORE can be used as an interface to any
description logic reasoner as it supports the functionality of the underlying reasoner by
just passing requests on and provides reasoning functionalities across versions if needed.
Therefore, the implementation of MORE will be independent of those particular applica-
tions or systems.

6.2 Functionalities

The current version of the MORE prototype (version 1.0.0) has the following characteris-
tics:

• Temporal Reasoning Queries: supports the logicLTLm .

1http://wasp.cs.vu.nl/sekt/dig
2http://dl.kr.org/dig/

CHAPTER 6. PROTOTYPE OF MORE 37

• Ontology Comparision Queries: supports new/obsolete/invariant concept queries
with respect to children/parent/ancestor/descendant concept relations.

• Versioning Queries : supports version retrieval, relative version numbering, and
absolute version numbering.

• Ontology Languages: supports the DIG format as well as the OWL language.
Ontological data in the OWL format is translated automatically by the XDIG com-
ponent ’owl2dig’3.

6.3 Installation and Test Guide

1. Download: The MORE package is available from the MORE website:

http://wasp.cs.vu.nl/sekt/more/

Unzip the MORE package into a directory. We will call the directory
MORE ROOT .

2. Installation of SWI-Prolog : MORE requires that SWI-Prolog (version 5.4.7 or
higher) has been installed on your computers. It can be downloaded from the SWI-
Prolog website:

http://www.swi-prolog.org

Install SWI-Prolog into a directory. We will call that directory
SWIPROLOG ROOT .

3. Installation of XDIG : You can find the zip file ’diglibrary.zip’, the XDIG libraries
in the directoryMORE ROOT . Unzip the file ’diglibrary.zip’ into the SWI-
Prolog library directory, i.e.,SWIPROLOG ROOT/library.

4. Installation of Racer: MORE requires Racer (version 1.7.14 or higher) as the
external DL reasoner. Other DL reasoners may work for MORE if they support the
DIG DL interface, however, they have not yet been tested. Racer can be downloaded
from the Racer website:

http://www.sts.tu-harburg.de/˜r.f.moeller/racer/download.html

The MORE testbed ’moretest.htm’ is a MORE client with a graphical interface,
which is designed as a webpage. Therefore it can be launched from a web browser which
supports Javascript. A screenshot of the MORE testbed, is shown in Figure 6.2.

3However, note that the component ’owl2dig’ is still under development. The complete specification of
OWL DL is not yet supported .

CHAPTER 6. PROTOTYPE OF MORE 38

Figure 6.2: MORE testbed.

CHAPTER 6. PROTOTYPE OF MORE 39

The current version of the MORE testbed supports tests for which both the MORE
server (with default port: 8003) and the external DL reasoner (with the default port:
8000) are running on the localhost. The default hostname of the MORE server and
the external DL reasoner is ’localhost’. For a MORE server which runs on a remote
host, change the host and port data in the ’moremain.htm’ file. Namely, replace the URL
’http://127.0.0.1:8003’ with another valid URL.

Before starting the MORE test, make sure that the MORE server and the external DL
reasoner (i.e. Racer) are running at the host with the correct ports.

1. Launch Racer: Racer can be launched by the following command: racer -http
8000 Alternatively, click on the file ’racer8000.bat’ if the MORE download package
includes the Racer reasoner.

2. Launch MORE server: click on the file ’more server.pl’ in the MORE directory.
If you encounter the global stack limit problem because of a big amount of test data,
you should increase the size of the global stack. The windows users can edit the
path setting of ’plwin.exe’ in the file ’moreserverbigGlobalStack.bat’, then launch
it.

The TELLm and ASKm request data can be copied into the TELL text area and the
ASK text area respectively. After that, you can click on the buttons ’Tell’ and ’Ask’ to
make the corresponding requests. The request data can also be posted from any applica-
tion without using the MORE testbed. That is useful if the test data exceeds the text area
limit.

6.4 Experiments with MORE

We have tested the current implementation of the MORE system on different versions of
real life ontologies from different domains. In the following, we briefly report experi-
ments we performed on detecting changes in the concept hierarchy of the following two
ontologies.

The OPJK Ontology The OPJK Ontology (Ontology of Professional Judicial Knowl-
edge) is developed within the SEKT Project4 by the Autonomous University of Barcelona
(UAB) and iSOCO (with the collaboration of the Spanish General Council of the Judi-
ciary) to support an intelligent FAQ (Iuriservice). This system will provide the relevant an-
swers through semantic matching to queries posed in natural language by Spanish judges
in their first appointment [Benjaminset al.2004, Casanovaset al.2005]. We used five dif-
ferent versions of the ontology from different stages of the development process. Each of
these version contains about 80 concepts and 60 relations.

4http://www.sekt-project.com/

CHAPTER 6. PROTOTYPE OF MORE 40

Results for the BioSAIL Ontology
Version(from) Version(to) NC OC NP OP NA OA ND OD Total
BioSAILv16 BioSAILv20 136 10 123 49 228 104 227 32 909
BioSAILv20 BioSAILv21 54 1 42 21 193 32 192 1 536

Results for the OPJK Ontology
Version(from) Version(to) NC OC NP OP NA OA ND OD Total
ontoRDF ontoRDF2 82 25 53 10 141 16 141 74 542
ontoRDF2 ontoRDF3 82 17 49 13 144 17 144 21 487
ontoRDF3 oplk 49 43 36 20 70 20 54 85 377
oplk opjk 4 7 2 1 8 6 8 18 54

NC = New Children concept relation, OC = Obsolete Children concept relation, NP =
New Parent concept relation, OP = Obsolete Parent concept relation, NA = New Ances-
tor concept relation, OA = Obsolete Ancestor concept relation, ND = New Descendant
concept relation, and OD = Obsolete Descendant concept relation.

Figure 6.3: MORE Tests on Concept Relations

The BiosSAIL Ontology The BioSAIL Ontology which was developed within the
BioSTORM project5. It has been used in earlier experiments on change management
reported in [Klein2004]. the complete data set consists of almost 20 different versions of
the ontology. We take three versions of the BioSAIL ontology for the tests reported below.
Each version of BioSAIL ontology has about 180 classes and around 70 properties.

Those two ontologies have been tested with different temporal reasoning queries. We
concentrated on retrieval queries about the structure of the concept hierarchy. In partic-
ular, we used retrieval queries with explicit version numbering as introduced in section
4.5. Below we show the results for the queries about the new and obsolete child, parent,
ancestor, and descendant relations in the concept hierarchy.

It has to be noted that the result are not the result of a syntactic analysis of the
concept hierarchy, but rely on description logic reasoning. This means that we also
detect cases where changes in the definition of a concept lead to new concept re-
lations that are only implicit in the Ontology. The results of these queries can be
found athttp://wasp.cs.vu.nl/sekt/more/test/ . Further, arbitrary tem-
poral queries using the operators introduced in this document can be formulated and ex-
ecuted. The only limitation is the interface to the underlying DL reasoner, that currently
is only implemented for queries about the concept hierarchy. This can easily be extended
to any functionality provided by the RACER system [Haarslev and Möller2001]. A list
of the template queries for temporal reasoning queries are available at the MORE testbed,
which can be downloaded from the MORE website.

5http://smi-web.stanford.edu/projects/biostorm/

CHAPTER 6. PROTOTYPE OF MORE 41

In this document, we just briefly report experiments we performed on detecting
changes in the concept hierarchy. A full test and evaluation of MORE will be reported in
the sequel SEKT deliverable D3.5.2 entitled ”Evaluation of MORE”.

Chapter 7

Discussion and Conclusions

In this document, we discussed the integrated management of multiple versions of the
same ontology as an open problem with respect to ontology change management. We
proposed an approach for multi-version management that is based on the idea of using
temporal logic for reasoning about commonalities and differences between different
versions. For this purpose, we define the logicLTLm that consists of operators for
reasoning about derivable statements in different versions. We show that the logic can
be used to formulate typical reasoning and retrieval queries that occur in the context of
managing multiple versions. We have implemented a prototypical implementation of the
logic in terms of a reasoning infrastructure for ontology-based systems and successfully
tested it on real ontologies.

Different from most previous work on ontology evolution and change management
our approach is completely based on the formal semantics of the ontologies under con-
sideration. This means that our approach is able to detect all implications of a syntactic
change. In previous work, this could only be done partially in terms of ontologies if
changes and heuristics that were able to predict some, but not all consequences of a
change. Other than previous work on changes at the semantic level which were purely
theoretical, we have shown that out approach can be implemented on top of existing
reasoners and is able to provide answers in a reasonable amount of time. In order to
be able to handle large ontologies with thousands of concepts, we have to think about
optimization strategies. Existing work on model checking has shown that these methods
scale up to very large problem sets if optimized in the right way. This makes us optimistic
about the issue of scalability.

One of the reasons for the efficiency of the approach is the restriction to the retro-
spective approach, that only considers past versions. This restriction makes linear time
logics sufficient for our purposes. A major challenge is the extension of our approach
with the prospective approach that would allow us to reason about future versions of

42

CHAPTER 7. DISCUSSION AND CONCLUSIONS 43

ontologies. This direction of work is challenging, because it requires a careful analysis of
a minimal set of change operators and their consequences. There are proposals for sets of
change operators, but these operators have never been analyzed form the perspective of
dynamic temporal logic. The other problem is that taking the prospective approach means
moving from linear to branching time logic which has a serious impact on complexity
and scalability of the approach.

The approach in this document is based on the linear temporal logicLTLm in
which version names are not explicitly expressed in temporal formulas, but implicitly
stated by relative/absolute version numbering. Sometimes it is more convenient and
useful if version names can be explicitly stated in temporal formulas. Part of the fu-
ture work is to extend the current temporal logic with nominals (i.e., version names) to
support that functionality. The temporal logics with nominals are usually called hybrid
logics[Blackburn and Tzakova1999, Blackburn2000].

The implementation of MORE will be integrated with SEKT work in the ontology
evolution and change[Haaseet al.2004, Haaseet al.2005], so that it can be used to support
multi-version reasoning under the ontology evolution and changes. We will report the
detailed evaluation on multi-version reasoning for ontology evolution and changes in the
sequel SEKT deliverable D3.5.2 entitled “Evaluation of MORE”.

Bibliography

[Banerjeeet al.1987] J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth. Semantics and
implementation of schema evolution in object-oriented databases. InSIGMOD Record
(Proc. Conf. on Management of Data), number 3 in 16, pages 311–322, 1987.

[Bechhoferet al.2003] Sean Bechhofer, Ralf M̈oller, and Peter Crowther. The dig de-
scription logic interface. InInternational Workshop on Description Logics (DL2003).
Rome, September 2003.

[Benjaminset al.2004] V.R. Benjamins, J. Contreras, M. Blázquez, L. Rodrigo,
P. Casanovas, and M. Poblet. The sekt use legal case components: ontology and ar-
chitecture. In T.B. Gordon, editor,Legal Knowledge and Information Systems, pages
69–77. IOS Press, Amsterdam, 2004.

[Blackburn and Tzakova1999] P. Blackburn and M. Tzakova. Hybrid languages and tem-
poral logic.Logic Journal of the IGPL, 7(1):27–54, 1999.

[Blackburn2000] P. Blackburn. Representation, reasoning, and relational structures: a
hybrid logic manifesto.Logic Journal of the IGPL, 8(3):339–365, 2000.

[Casanovaset al.2005] P. Casanovas, M. Poblet, N. Casellas, J-J. Vallbé, F. Ramos, V.R.
Benjamins, M. Bĺazquez, J. Contreras, and J. Gorronogoitia. Legal scenario. case study
intelligent integrated decision support for legal professionals. Project Report Report
D10.2.1, SEKT, 2005.

[Clarkeet al.1999] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.Model
Checking. The MIT Press, Cambridge, Massachusetts, 1999.

[Compatangeloet al.2004] E. Compatangelo, W. Vasconcelos, and B. Scharlau. Man-
aging ontology versions with a distributed blackboard architecture. InProceedings
of the 24th Int Conf. of the British Computer Societys Specialist Group on Artificial
Intelligence (AI2004). Springer-Verlag, 2004.

[Haarslev and M̈oller2001] Volker Haarslev and Ralf M̈oller. Description of the racer
system and its applications. InProceedings of the International Workshop on Descrip-
tion Logics (DL-2001), pages 132–141. Stanford, USA, August 2001.

44

BIBLIOGRAPHY 45

[Haaseet al.2004] Peter Haase, York Sure, and Denny Vrandecic. Ontology management
and evolution - survey, methods and prototypes. Project Report D3.1.1, SEKT, 2004.

[Haaseet al.2005] Peter Haase, Frank van Harmelen, Zhisheng Huang, Heiner Stucken-
schmidt, and York Sure. A framework for handling inconsistency in changing ontolo-
gies. Project report, SEKT, 2005.

[Heflin and Pan2004] J. Heflin and Z. Pan. A model theoretic semantics for ontology
versioning. InThird International Semantic Web Conference, pages 62–76, Hiroshima,
Japan, 2004. Springer.

[Horrocks1999] I. Horrocks. Fact and ifact. InProceedings of the International Work-
shop on Description Logics (DL’99), pages 133–135, 1999.

[Huang and Visser2004] Zhisheng Huang and Cees Visser. Extended dig description
logic interface support for prolog. Deliverable D3.4.1.2, SEKT, 2004.

[Klein2004] M. Klein. Change Management for Distributed Ontologies. Phd thesis,
Vrije Universiteit Amsterdam, 2004.

[McGuinness and van Harmelen2004] D. McGuinness and F. van Harmelen. Owl web
ontology language. Recommendation, W3C, 2004. http://www.w3.org/TR/owl-
features/.

[Noy and Musen2003] N.F. Noy and M.A. Musen. The prompt suite: Interactive tools for
ontology merging and mapping.International Journal of Human-Computer Studies,
59(6):983–1024, 2003.

[Rescher and Urquhart1971] N. Rescher and A. Urquhart.Temporal Logic. Springer-
Verlag, 1971.

[Roddick1995] J. F. Roddick. A survey of schema versioning issues for database systems.
Information and Software Technology, 37(7):383–393, 1995.

[Schlobach and Cornet2003] S. Schlobach and R. Cornet. Non-standard reasoning ser-
vices for the debugging of description logic terminologies. InProceedings of the In-
ternational Joint Conference on Artificial Intelligence - IJCAI’03, Acapulco, Mexico,
2003. Morgan Kaufmann.

[Stojanovic2003] L. Stojanovic.Methods and Tools for Ontology Evolution. Phd thesis,
University of Karlsruhe, 2003.

[Stuckenschmidt and Klein2003] H. Stuckenschmidt and M. Klein. Integrity and change
in modular ontologies. InProceedings of the International Joint Conference on Artifi-
cial Intelligence - IJCAI’03, Acapulco, Mexico, 2003. Morgan Kaufmann.

BIBLIOGRAPHY 46

[van Benthem1995] Johan van Benthem. Temporal logic. InHandbook of Logic in Arti-
ficial Intelligence and Logic Programming, volume 4, pages 241–350. Oxford, Claren-
don Press, 1995.

