
XSTEP: A Markup Language for Embodied Agents

Zhisheng Huang, Anton Eliëns, and Cees Visser
Vrije Universiteit Amsterdam, The Netherlands

{huang,eliens,ctv}@cs.vu.nl

Abstract

In this paper we propose an XML-based markup lan-
guage, called XSTEP, for embodied agents, based on the
scripting language STEP. XSTEP is the XML-based suc-
cessor of STEP. The scripting language STEP incorporates
the formal semantics of dynamic logic, and has been imple-
mented in the distributed logic programming language DLP,
a tool for the implementation of 3D web agents. In this pa-
per, we discuss the issues of markup language design for
embodied agents and several aspects of the implementation
and application of XSTEP.

1 Introduction

Embodied agentsare autonomous agents which have
bodies by which the agents can perceive their world di-
rectly through sensors and act on the world directly through
effectors. Web agentsare embodied agents whose experi-
enced worlds are the Web; typically, they act and collab-
orate in networked virtual environments. In addition,3D
web agentsare embodied agents whose 3D avatars can in-
teract with each other or with users via Web browsers[6].
Embodied agents usually interact with users or each other
via multimodal communicative acts, which can be verbal
or non-verbal. Gestures, postures and facial expressions are
typical non-verbal communicative acts. One of the main ap-
plications of embodied agents are virtual presenters, or al-
ternatively calledpresentation/conversation agents. These
agents are designed to represent users or other agents in
virtual environments, like virtual meeting spaces or virtual
theaters, by means of hypermedia tools as part of the user
interface[10].

These kind of applications appeal for human markup lan-
guages for multimedia presentations. These markup lan-
guages should be able to accommodate the various aspects
of human-computer interaction, including facial animation,
body animation, speech, emotional representation, and mul-
timedia. In [3], we outline the requirements for a soft-
ware platform supporting embodied conversational agents.

These requirements encompass computational concerns as
well as presentation facilities, providing a suitably rich en-
vironment for applications deploying conversational agents.

The avatars of 3D web agents are often built in the Vir-
tual Reality Modeling Language (VRML)1. These avatars
are usually humanoid-like ones. The humanoid animation
working group2 proposes the H-anim specification, for the
creation of libraries of reusable humanoids in Web-based
applications as well as authoring tools that make it easy to
create humanoids and animate them in various ways. H-
anim specifies a standard way of representing humanoids
in VRML. We have implemented STEP for H-anim based
humanoids in the distributed logic programming language
DLP[2].3 DLP is a tool for the implementation of 3D in-
telligent agents[7].4 STEP introduces a Prolog-like syn-
tax, which makes it compatible with most standard logic
programming languages, whereas the formal semantics of
STEP is based on dynamic logic[5]. Thus, STEP has a solid
semantic foundation, in spite of a rich number of variants of
the compositional operators and interaction facilities.5

2 XSTEP design considerations

We consider the following requirements for the design of
the markup language for embodied agents.

Declarative specification of temporal aspects The spec-
ification of communicative acts, like gestures and facial
expressions usually involve changes of geometrical data
in time, like ROUTE statements in VRML, or movement
equations, like those in computer graphics. A markup lan-
guage for the presentation of embodied agents should be
designed to have a solid temporal semantics. A good solu-
tion is to use existing temporal models, like those in tem-
poral logic or dynamic logic. The scripting language STEP,
and therefore the markup language XSTEP, is based on the

1http://www.vrml.org
2http://www.H-anim.org
3http://www.cs.vu.nl/∼eliens/projects/logic/index.html
4http://wasp.cs.vu.nl/wasp
5http://wasp.cs.vu.nl/step



semantics of dynamic logic. Typical temporal operators
in STEP are the sequential actionseq and the parallel ac-
tion par, in XSTEP we have the corresponding<par> and
<seq> tags.

Agent-orientation Markup languages for embodied
agents should be different from markup languages for
general multimedia presentation, like SMIL. The former
have to consider the expressiveness and capabilities of their
targeted agents. However, it’s not our intention to design
a markup language with fully-functional computation
facilities, like other programming languages as Java, DLP
or Prolog, which can be used to construct fully-functional
embodied agents. We separate external-oriented commu-
nicative acts from internal changes of the mental states of
embodied agents because the former involves only geomet-
rical changes of the body objects and the natural transition
of the actions, whereas the latter involves more complicated
computations and reasoning. The markup language is
designed to be a simplified, user-friendly specification
language for the presentation of embodied agents instead
of the construction of a fully functional embodied agent. A
markup/scripting language should be interoperable with a
fully powered agent implementation language, but offer a
rather easy way for authoring. This kind of interaction can
be achieved by the introduction of high-level interaction
operators, like those in dynamic logic. Typical higher level
interaction operators are the execution operator<do> and
the conditional<if thenelse>.

Prototypability The presentation of embodied agents
usually consists of some typical communicative acts, say,
a presentation with a greeting gesture. The specification
of the greeting gesture can also be used for other presenta-
tions. Therefore, a markup language for embodied agents
should have re-usability facilities. XML-based markup lan-
guages offer a convenient tool for information exchange
over the Web; an inline hyperlink in the markup language
is an easy solution for this purpose. That would lead to
the design of prototypability of markup languages, like the
internal/external prototypes in VRML. The scripting lan-
guage STEP is designed to be a rule-based specification
system. Scripting actions are identified by their own names
and can be re-defined for other scripting purposes. XSTEP
uses a similar strategy as STEP for prototypability. One
of the advantages of this kind of rule-based specification is
parametrization. Namely, actions can be specified in terms
of how these actions cause changes over time to each indi-
vidual degree of freedom, which is proposed by Perlin and
Goldberg in [9]. Another method of parametrization is to
introduce variables or parameters in the names of script-
ing actions, which allows for a similar action with different
values. This is one of the reasons why STEP introduces a

Prolog-like syntax.
XSTEP is designed to be a markup language for the pre-

sentation of embodied agents and offers a lot of functional-
ity on relevant topics, like those for 2D/3D avatars, multi-
media, and agents. A lot of work has been done in these ar-
eas and most of them are already quite mature. XSTEP does
not want to overlap with the existing work. Such languages
or specifications can often be embedded in XSTEP. Here
are several examples:2D/3D graphical markup languages,
like the scalable vector graphics (SVG)6 specification for
two-dimensional graphics, and X3D7, the next generation
of VRML, an XML-based language for 3D object specifi-
cation;XML-based multimedia markup languages, like the
Synchronized Multimedia Integration Language (SMIL)8;
Humanoid markup languages, like the H-anim specification
for humanoids, and the HumanMarkup specification (Hu-
manML)9; Agent specification languages, like the Intelli-
gent Physical Agents Specification (FIPA)10.

3 XSTEP: XML-encoded STEP

XSTEP uses the same reference system as STEP. In or-
der to make this paper self-contained, we also present the
necessary details of the reference system of XSTEP here.

3.1 A Reference System for STEP and XSTEP

3.1.1 Direction Reference

Based on the standard pose of an humanoid, we can de-
fine the direction reference system as sketched in Figure
1. The direction reference system is based on three dimen-
sions: front vs. back which corresponds to the Z-axis, up
vs. down which corresponds to the Y-axis, and left vs. right
which corresponds to the X-axis. Based on these three di-
mensions, we can introduce a more natural-language-like
direction reference scheme, say, turning left-arm to ’front-
up’, is to turn the left-arm such that the front-end of the arm
will point to the up front direction. Figure 2 shows several
combinations of directions based on these three dimensions
for the left-arm. The direction references for other body
parts are similar.

These combinations are designed for convenience for
non-professional authors. However, they are not suffi-
cient for more complex applications. To solve this prob-
lem, we introduce interpolations with respect to the men-
tioned direction references. For instance, the direction
’left front2’ is referred to as one which is located between

6http://www.w3.org/Graphics/SVG/
7http://www.web3d.org/x3d.html
8http://www.w3.org/AudioVideo/
9http://www.oasis-open.org/committees/humanmarkup/ index.shtml

10http://www.fipa.org/

2



’left front’ and ’left’, as is shown in Figure 2. Both STEP
and XSTEP also support the original VRML reference sys-
tem. Directions can also be specified to be a four-place tu-
ple 〈X,Y, Z,R〉, for example,rotation(1, 0, 0, 1.57). In
XSTEP, the directions are represented either by the tag
’dir’, like <dir value=”front”/> or the tag ’rotation’, like
<rotation x=”1” y=”0” z=”0” r=”1.57”/>.

3.1.2 Body References

An H-anim specification contains a set ofJoint nodes, ar-
ranged in such a way that they form a hierarchy. Turning
body parts of humanoids implies the setting of the relevant
joint’s rotation. Moving the body means the setting of the
HumanoidRoot to a new position. For instance, the action
’turning the left-arm to the front slowly’ is specified as:

<turn actor="Agent" part="l_shoulder">
<dir value="front"/><speed value="slow"/></turn>

3.1.3 Time Reference

The proposed scripting language has the same time refer-
ence system as VRML. For example, the actionturning the
left arm to the front in 2 secondscan be specified in STEP
as:

<turn actor="Agent" part="l_shoulder">
<dir value="front"/>

<time unit="second" value="2"/></turn>

This kind of explicit specification of duration in script-
ing actions does not satisfy the parametrization principle.
STEP introduces a more flexible time reference system
based on the notions of beat and tempo. Abeat is a
time interval for body movements, whereas thetempo is
the number of beats per minute. By default, the tempo
is set to 60. Namely, a beat corresponds to a sec-
ond by default. However, the tempo can be changed.
Moreover, we can define different speeds for body move-
ments, for example the speed ’fast’ can be defined as one
beat, whereas the speed ’slow’ can be defined as three
beats. The predefined speed specifications in XSTEP are
{fast, slow, intermediate, very fast, very slow}.

3.2 Actions Operators

Turn and move are two main primitive actions for body
movements. Turn actions specify the change of rotations
of body parts or the whole body over time, whereas move
actions specify the change of positions of body parts or the
whole body over time. For instance, a turn action in XSTEP
is expressed as follows:

<turn actor="Agent" part="l_shoulder">
<dir value="front"/><speed value="fast"/></turn>

A move action with increment parameters in XSTEP is
expressed like this:

<move actor="Agent"><increment x="1" y="0" z="0"/>
<speed value="fast"/></move>

XSTEP has the same temporal operators/tags as
SMIL: sequence action ’seq’ and parallel action ’par’.
Extended with the action operators as defined in dy-
namic logic, XSTEP has the following operators:
• non-deterministic choice operator: the action
<choice> Action1, ..., Actionn </choice> denotes
a composite action in which one of theAction1,
..., or Actionn is executed non-deterministically.
• repeat operator: the action<repeat action= ”Ac-
tion” times=”T”/> denotes a composite action in which
the Action is repeatedT times. When using high-level
interaction operators, XSTEP can directly interact with
internal states of embodied agents or with external states
of worlds. These interaction operators are based on a meta
language which is used to build embodied agents, say, the
distributed logic programming language DLP.

Examples of several higher-level interaction
operators in the XSTEP scripting language are:
• execution: <do state=”φ”/>, make the state
φ true, i.e. executeφ in the meta language.
• conditional: <if thenelse cond=”φ” then=”action1”
else=”action2”/>: if φ holds, then executeaction1 else
executeaction2. We use lower case Greek lettersφ, ψ, χ
to denote formulas in the meta language.

3.3 Example: Walk and its Variants

A walking posture can be simply expressed as a move-
ment which changes the following two main poses: a pose
in which the left-arm/right-leg move forward while the
right-arm/left-leg move backward, and a pose in which the
right-arm/left-leg move forward while the left-arm/right-
leg move backward. The main pose and interpolations are
shown in Figure 3. The walk action can be described in
XSTEP as:

<action name="walk(Agent)"><seq><par>
<turn actor="Agent" part="r_shoulder">

<dir value="back_down2"/>
<speed value="fast"/></turn>

<turn actor="Agent" part="r_hip">
<dir value="front_down2"/>
<speed value="fast"/></turn>

<turn actor="Agent" part="l_shoulder">
<speed value="fast"/>
<dir value="front_down2"/></turn>

<turn actor="Agent" part="l_hip">
<dir value="back_down2"/>
<speed value="fast"/></turn></par><par>

<turn actor="Agent" part="l_shoulder">
<dir value="back_down2"/>
<speed value="fast"/></turn>

3



<turn actor="Agent" part="l_hip">
<dir value="front_down2"/>
<speed value="fast"/></turn>

<turn actor="Agent" part="r_shoulder">
<dir value="front_down2"/>
<speed value="fast"/></turn>

<turn actor="Agent" part="r_hip">
<dir value="back_down2"/>
<speed value="fast"/></turn>

</par></seq></action>

Thus, a walk step can be described as a parallel action
which consists of the walking posture and the moving action
(i.e., changing position):

<action name="walk_forward_step(Agent)">
<par><script_action name="walk_pose(Agent)"/>

<move actor=Agent part="humanoidRoot">
<dir value="front"/><speed value="fast"/>

</move></par></action>

The step length can be a variable like:

<action name="walk_forward_step0(Agent,StepLength)">
<par><script_action name="walk_pose(Agent)">

<move actor="Agent" part="humanoidRoot">
<increment x="0" y="0" z="StepLength"/>

<speed value="fast"/></move></par>
</action>

Therefore, walking forwardN steps with a particular
StepLength can be defined in XSTEP as:

<action name="walk_forward(Agent,StepLength,N)">
<repeat action="walk_forward_step0(Agent,

StepLength)" times="N"/></action>

The animations of the walk action based on these defi-
nitions are simplified and approximated ones. As analysed
in [4], a realistic animation of walk motions of humans in-
volves a lot of computations which rely on a robust simu-
lator where forward and inverse kinematics are combined
with automatic collision detection and response. We would
like to point out that there does exist the possibility to ac-
commodate some inverse kinematics to improve the realism
by using the execution operator ’do’ to achieve the compu-
tation capabilities in the meta language level. The same ap-
proach can be also be used for the interaction with virtual
worlds and the communication with other embodied agents.
In the next section we will discuss several aspects of the in-
teraction between embodied agents and virtual worlds.

3.4 Example: Interaction with Virtual Worlds

In this example, we want to show how the interaction be-
tween embodied agents and virtual worlds can be achieved
by using the high-level interaction operators. Consider a
situation in which there are several avatars and a ball. The
position of the ball is always changing because other avatars

may kick the ball. We want to design script actions for em-
bodied agents so that they can always look at the ball or run
to the ball no matter where the ball is located.

In the following, we suppose that the meta language of
the scripts is DLP. Other languages can be processed by the
same strategy. Given the current positions of the embodied
agent and the ball, we can always calculate the new rotation
of the agent so that it looks at the ball. By using the high
level interaction operator ’do’ with the built-in operators in
the meta language we can define the script action ’look at
ball’ as follows:

<action name="look_at_ball(Agent,Ball)">
<seq><do state="getPosition(Agent,X,_,Z)"/>

<do state="getPosition(Ball, X1,_,Z1)"/>
<do state="Xdif is X-X1"/>
<do state="Zdif is Z1-Z"/>
<do state="R is atan(Zdif/Xdif)-

sign(Xdif)*1.57"/>
<turn actor="Agent">

<rotation x="0.0" y="1.0" z="0.0" r="R"/>
<speed value="fast"/></turn></seq></action>

Namely, we use the predicatesgetPosition in the meta
language to obtain the positions of the agent and the ball.
The new rotationR of the agent can be calculated based on
the following formula :

R = arctan((Z1−Z)/(X−X1))−sign(X−X1)×π/2.

Using the high-level interaction operators, embodied
agents can get and set not only the information of their
virtual worlds, but also can change their internal states.
They can be used to serve as a communication facility be-
tween embodied agents and virtual worlds. Prolog-style
parametrization makes XSTEP scripts more flexible for the
creation of variants of scripting actions. The support of re-
cursive definitions of scripting actions makes the language
more powerful and elegant for programming.

4 XSTEP: Components and Implementation

4.1 Components of XSTEP

Complete XSTEP scripts consist of three
components: head, library and embeddedcode:
• head: the head component in XSTEP consists of
the elementsWorld, Starting Action, and Meta language
statement. The World specifies the URL of the virtual
world/avatar and whether avatar code is embedded, so that
XSTEP can load the virtual world into the web browser. A
Starting actionstates an instantiated action so that XSTEP
can start the action for the presentation. TheMeta language
statementdefines the meta language for the high-level
interaction operators. DLP is the default meta language.
• library : XSTEP is mainly used to construct gesture and

4



Figure 1. Direction Reference for Humanoid

Figure 2. Combination of the Directions for
Left Arm

Figure 3. Walk

Figure 4. Look at Ball

Figure 5. Screenshot of XSTEP editor

action libraries. The definitions of scripting actions are
located in the XSTEP library component. Namely, they are
located inside the tag< library > with or without a name
of the library. The scripting actions in the libraries are
usually formatted as general rules with variables according
to the prototypability requirements. They can be re-used
by calling them from other internal or external actions.
So-calledinternal actionsare located in the same XSTEP
files, whereas theexternal actionsare located in other files.
• embeddedcode: This component contains additional
XML-based code, for example an X3D or SVG script
which specifies embedded avatars.

4.2 Implementation of XSTEP

We have implemented the scripting language STEP [8]11

in the distributed logic programming language DLP. The
scripting actions in STEP can be embedded in DLP code
of embodied agents with the STEP kernel. These actions
can be called by the interfacing predicates of the STEP ker-
nel for the purpose of the presentation of embodied agents.
A STEP testbed has been implemented: users can use the
STEP testbed in web browsers to construct their own STEP
scripting actions and test them online without knowledge of
DLP and VRML.

We have also implemented an XSTEP editor based on
IBM’s XML editor Xeena12. This XSTEP editor will help
the author to edit XSTEP code and translate it to STEP
scripts so that they can be run from the STEP tool, testbed,

11http://wasp.cs.vu.nl/step
12http://www.alphaworks.ibm.com/tech/xeena

5



or DLP code. A screenshot of the XSTEP editor based on
Xeena is shown in Figure 5. We are currently working on
the development of a tool so that STEP and XSTEP code
can be executed as a stand-alone file.

5 Discussion and Conclusion

XSTEP can be considered to be one of the VHML (Vir-
tual Human Markup Language)-like languages.13 The lan-
guage VHML is designed to accommodate the various as-
pects of human-computer interaction, including facial ani-
mation, body animation, speech, emotional representation,
and multimedia. XSTEP and VHML share many common
goals, however, one of the differences between XSTEP and
the VHML is that XSTEP is based on the formal semantics
of dynamic logic, so that it has a solid semantic foundation,
in spite of the rich variants of compositional operators and
interaction facilities. Secondly, Prolog-like parametriza-
tion in XSTEP makes it more suitable for the interaction
with intelligent embodied agents. Another advantage of
parametrization is to introduce variables or parameters in
the names of scripting actions, which allows for a similar
action with different values. In particular, agent names and
their relevant parameters are specified as variables in script
libraries, by which the same scripting actions can be re-used
for different embodied agents under different situations by
different authors. It significantly improves the reusability of
scripting actions for the purpose of productivity.

An interesting example of animated humanoid avatars is
provided bySigning Avatar.14 The scripting language for
Signing Avataris based on the H-anim specification and al-
lows for a precise definition of a complex repertoire of ges-
tures, as examplified by the sign language for the deaf. Nev-
ertheless, this scripting language is of a proprietary nature
and does not allow for high-order abstractions of semanti-
cally meaningful behavior. More detailed comparisons and
related work discussions with respect to STEP and XSTEP
can be found in [3, 8].

Future STEP and XSTEP work will include:
• Ontology of human markup languages. More hu-
man markup languages are expected to be proposed in
coming years. These languages may use completely dif-
ferent terminology and semantic models. A good solution
to the maintenance of interoperability among multiple ref-
erence systems is to make XSTEP ontological-relevant. A
so-calledontologyis a description of the concepts or bodies
of knowledge understood by a particular community and
the relationships between these concepts. An ontological
investigation for human markup language is needed so that
the presentations and their libraries can be interoperable.
• Facial expression and emotion models in XSTEP. We

13http://www.vhml.org
14http://www.signingavatar.com

are going to extend XSTEP with facial expressions. These
facial expressions can be marked with tags like ’anger’,
’happy’ and ’sad’, as suggested in VHML. The termi-
nology can be formalized based on emotion models and
further specified by the corresponding ontological claim.
• Speech and other multimedia modes in XSTEP. We
are also planning to extend XSTEP with speech/voice and
other multimedia modes, so that we can enrich embodied
agents with the functionality needed to create convincing
embodied agents in a meaningful context.

References

[1] Earnshaw, R., Magnenat-Thalmann, N., Terzopoulos,
D., and Thalmann, D., Computer Animation for Vir-
tual Humans,IEEE Computer Graphics and Applica-
tions18(5), 1998.

[2] Eli ëns, A., DLP, A Language for Distributed Logic
Programming, Wiley, 1992.

[3] Eli ëns, A., Huang, Z., and Visser, C., A platform
for Embodied Conversational Agents based on Dis-
tributed Logic Programming, Proceedings of AAMAS
2002 Workshop on Embodied Agents, 2002.

[4] Faure, F., Debunne, G., Cani-Gascuel, M., Multon, F.,
Dynamic analysis of human walking, Proceedings of
the 8th Eurographics Workshop on Computer Anima-
tion and Simulation, 1997.

[5] Harel, D., Dynamic Logic,Handbook of Philosoph-
ical Logic, Vol. II, D. Reidel Publishing Company,
1984, 497-604.

[6] Huang, Z., Elïens, A., van Ballegooij, A., and de Bra,
P., A Taxonomy of Web Agents,Proceedings of the
Workshop on Database and Expert Systems Applica-
tions, IEEE Computer Society, 765–769, 2000.

[7] Huang, Z., Elïens, A., and Visser, C.,3D Agent-based
Virtual Communities, Proceedings of the 2002 Web 3D
Conference, ACM Press, 2002.

[8] Huang, Z., Elïens, A., and Visser, C., STEP: a Script-
ing Language for Embodied Agents, Proceedings of
the Workshop of Lifelike Animated Agents, 2002.

[9] Perlin, K., and Goldberg, A., Improv: A System for
Scripting Intereactive Actors in Virtual Worlds,ACM
Computer Graphics, 205-216, 1996.

[10] Prendinger,H., Descamps, S., and Ishizuka, M.,
Scripting affective communication with life-like char-
acters in web-based interaction systems,Journal of
Applied Artificial Intelligence16, 519-553, 2002.

6


