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Abstract. The ramification problem in Artificial Intelligence concerned with the indirect effects
of an action. It has been shown in previous woek the ramification problem can be solved with
the use of integrity constraints and actions repregion. In this paper we begin with a quick
review of the existing Description Logics Languagesd then we describe a Temporal Extension
of Description Logics, able to represent integrdgnstraints, temporalized actions and non
persistent effects. We describe a thorough solut®mrithe ramification problem in Temporal
Settings expressed in Temporal Description Logics.
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1 I ntroduction

The ramification problem, in Artificial Intelligercfield, is concerned with the indirect effectsanf
action. In other words, it deals with the problehrepresenting the consequences of an action.dt is
hard and ever existing problem, in systems exhiid dynamic behavior [11].

We describe a solution to the ramification probldim,using an example originally presented by
[11]. However, the example and solution are thigetexpressed in whole, in Temporal Description
Logics instead of First Order Logic. In order tcamplish that, we put together features of existing
Description Logics languages and enrich them tomivec more specific and deterministic, so as to
describe the integrity constraints and temporal&aetibns, as well as the effects of those actiaits,
uttermost clarityMore specifically, we combine features from thegiamgeTL-F presented by Artale
and Franconi [3], along with features of the syntalrs from the Schmiedel proposal [2] (also show
in figure 4), in order to be able t@present actions and integrity constraints, irerivdl Based
TemporalDescription Logics. We are also able to repredeatiion persistent effects of those actions.
The effects refer to specific and well defined timtervals.

In the following section (Section 2), we are gotngpresent the basic syntax of Description Logics,
along with existing implementations of Descriptibogic Languages and some Temporal Extensions
of Descriptions Logics. In Section 3, we presesbhtion to the ramification problem with the ude o
an example and Temporal Description Logics. We ipialgorithms for the production of static rules
and the evaluation of dynamic and static rulesthin last part of Section 3, there are two theorems
proving the correctness of the previously presergkgbrithms. In Section 4, we summarize the



information provided in this paper, and describghier extensions or applications of the provided
solution of the ramification problem.

2 Description Logics Basics and Previous Work

In this section, we will initially present casesewd it is useful to migrate from First Order Logic
Description Logics. Then we will describe the basaf Description Logics and mention existing
Description Logic Languages, as well as Tempora¢isions to Description Logics.

First Order Logics is nowadays the most common used for knowledge representation. However
using FOL (First Order Logic) to represent Knowledgases in Relational Databases has proved to be
inefficient, as FOL has too much expressive powed therefore lacks computational speed and
efficient procedures. Also, Semantic Networks anadnes do not require the whole part of First Order
Logic. Additionally, the direct use of FOL can hae® low inference power for expressing interesting
theories. Therefore "Description Logics” has beetmoduced as a formal language for representing
knowledge and reasoning about it [7] Descriptiagics, a structured fragment of FOL, is nowadays
considered the most important knowledge represent&drmalism, unifying and giving a logical basis
to Frame-based systems, Semantic Networks, Objeenht®d and semantic data models. Description
Logics are preferred for their high expressivity atecidability, as well as their reasoning algarith
which always return correct answers [3]. It is shoby [8], that Knowledge Base satisfiability in
Description Logics (specifically with languagdLCQJ ) can be EXPTIME-decidable and EXPTIME-
complete.

The basic types of a concept language are conages, and individuals (concept names) [5]. A
concept is a description of a collection of indivads with common properties [13], for example
“Employee” is a concept. Roles express relatiortevéen these individuals of concepts. For example
“supervise”, represents the relationship betweatividuals belonging in Employee and Employer
concepts. Individuals are constants of concepts ®\gck” is a constant of Employee (Nick:
Employee). The most basic Description Logic Languag ALC (Attributive Language with
Complements) with syntax:

ALC:= L|A|-C|GD|CuUD]|3RC|VR.C.

The following table represents the formal semardfc8lLC and their FOL representation [13]..

Syntax Formal Semantics FOL semantics
A: | AT oAt Fa(x)
Gn-Bi | Eefmn.BF Fe(x) A Fp(x)
&N | CEULTD Fe(x) Vv Fp(x)
—-C : | 2T —Fc(x)
YRC: | lae af|¥b(a.b)eRT 5 be CTY | Yo Fr(x.z) — F.(2)
ARC : | {lae 27| Ab(a. b)Y e RTy Anb e CT} | Az Fr(x.z) A Fo(2)

Fig. 1. Semantics ofALC.

Let us note that an interpretatibr{shown in Figure 1)is a model of a knowledge baseif and
only if every axiom of, is satisfied by. X logically implies AC C (written: = A C C) if A' € C' for
every model ok: we say that A is subsumed by Gifi3].



Description logics can be extended in order toehavemporal basis. We can have either point-
based temporal description logiclLCT [13], CQTus [12] , ALCOIT [4], or interval based
temporal description logics [13]. A way of additemse logic (point based) to Description Logics was
introduced by [12], withCQJus, and extended by [4], WitbALCQIT. In the aforementioned

extensions the temporal operatdf(until) andS (Since), along with the temporal operaters, &7,
0", O were introduced, in order to enhance Descriptiogits with a temporal dimension. The
meaning of those operators (also shown in Figuis: 2)

&1 (Sometime in the future ™ C =T 7/C
<7 (Sometime in the pastp™ C =TSC
O" (Always in the future)

" (Always in the past)

', D y  CWD | (Cuntil D) (untl)
s D | (€7 since ) (since)
ota | (somefut ') (future existential)
S| (somepast ') (past existential)
oto | (allfut ') (future universal)
Oo—¢’ (allpast ') (pastuniversal)

Fig. 2. Temporal Extension aALCQJ

A further extension of the languagedLCT, ALCOIT and CQJus was made by [9], with the
language ALC,, , that defines the new operato(next time), O(previous time), and fixpoint
concept expressions likeA.C. A language describing Interval Based Descriptiayits is 7DL
presented by Lutz [10]. Also a powerful temporada#tion language nameBLRus is described by

[6]. DLRus variants accomplish EXPTIME-complete reasoning, aBXPSPACE-complete
satisfiability and logical implication [6].

Artale and Franconi have also presented a langablgeto describe both non-temporal feature logic
and interval temporal networks iL-F [3]. The basic types of this language are congepts
individuals, temporal variables and intervals. Gepts can be specified to hold at a certain temporal
variable (or interval). In this way, actions (regmividual actions) can be expressed in a unifaray
by temporally related concepts (resp. individuf®) The most common notation used for Temporal
Interval Relations, used in Interval Based TempbDmscription Logics, is the one originally presehte
by Allen in [1],[5], and also shown in Figure 3.

Concepts expressions are denoted by C, D are dutilof atomic concepts denoted by A. Atomic
features are denoted by f, whereas atomic pararfetitures are denoted by. Parametric features
[3], (e.g.*Employee inxEmployee: Misdemeanor) plays the role of formalapaeter of the action
mapping any individual action of type Misdemeamatependently from time. Temporal variables are
denoted by X, Y. When writing C@X it means that cept C holds at time interval denoted by
variable X. There is also the special temporalalde now (or #) which is used as the reference
temporal variable of the action (concept). Now &hlgé can be omitted when possible. For example, the
expression lllegat Suspended is the same with Illegal@rovBuspended@now.



Relation Abbr. Inverse 2 ¥

before (i, 7) =] a

meets (i, 7) m mi

overlaps (i, 7) o ol —
starts(z, j) s si

during (i, ) d di

finishes(Z, 5) f fi

Fig. 3. Allen’s interval relationships.

CCORCepis s <atomic-concepre
fand <concepi>" )
i{all =role> <concepi>)
{atleast min <roie>)
(atmost moax <rofe>)
{at <=inmrerval> <concepr=)
(sometime {<inrerval-variablie="") <fime-ner= <concepr=)
(alltime (<inrervai-variafble>" ) <time-ner>.<concepr=)

<afomnic-conce = 1= svinbol

<roles 1= <atowic-roles

{and <role="")

{domain <concepr=)

{range <concepr=)

{at =inrerval> <role>)

(sometime (<interval-variablie=7") <time-ner=_<role=)
(alltime (=inrerval-variabie=>") <time-ner><role>)

<gfownic-role= 1= svinbol

<Hme-ners> 1= <rime -consiral nr>
(and <time-constraini="")
<fime-consirainre 1= (<interval-relarion> <inrerval> <inrervail=)
(<oomparison= <inferval> <durarion-consianr=)
(<granuwlaritve <interval=>)
< irerval-relarion> 1= equal meets met-by | after before
overlaps overlapped-by starts started-by
finishes finished-by during | contains
(or <inrerval-relarion=""
<oomparison> imm o | K | = = | >

<groanularity> 1= sec rrein frowr

<inrerval> 1= <inrervai-variable> | <inrerval-constanr> Fw

<@rrerval-variabie> 1= symbol

< imterval-constani> = symbol

<AUra o n-consiani> 1= svimbol

Fig. 4. Syntax rules of Schmiedel's Temporal Extensiarppsal

As we have mentioned before in the following settiee combine features from the languaé-
F presented by [3], as well as featurestlid syntax rules from the Schmiedel proposal [2]sq
shown in figure 4), in order to represent actiongggrity constraints and non persistent effeats, i
Interval Based Temporal Description Logics. Extensihave been made, in cases where the existing
Temporal Description Logic Languages, were not sige@enough to express actions, integrity
constraints and time restrictions, with claritysa®wn in the following example of Section 3.



3 Dealing with the ramification problem with algorithms expressed in
Temporal Description Logics

A solution to the ramification problem with the usfeTemporal Description Logics is presented irs thi
section. Consider the following example from [11f)a public employee commits a misdemeanor,
then for the next five months s/he is consideriegjdl, except if s/he receives a pardon. When déiqub
employee is illegal, then s/lhe must be suspendédamnot take promotion, for the entire time in&trv
over which s/he is considered illegal. Also whepublic employee is suspended s/he cannot take
her/his salary until s/he stops being suspendech Bablic employee is evaluated for her/his wofk. |
s/he receives a bad grade, then s/he is assuntmladad employee and s/he cannot take promotion
until s/he receives a good grade. If s/he receavgmod grade, then s/he is assumed to be a good
employee and s/he takes a bonus if s/he is noiesdsg. Also, assume that a public worker is not
illegal, if there does not exist information thabyges s/he is illegal, and is not suspended ifetlirres

not exist information that proves s/he is suspenaled takes his/her salary, if there does not exist
information that proves the opposite. This helpslefne the default axioms. As we observe we have
four actionsmisdemeanor, take_pardon, good_grade, bad-graé seven fluents: gooemployee,
bad_employee, illegal, take_salary, take_bonuse_tpkomotion, suspende@he direct effects of the
four actions are expressed in propositional forntheyfollowing constraints:

FOL Representation of the Integrity Constraintpresented by Papadakis and Plexousakis [11]:

occur(misdemeanor(p), 1 illegal(p,5m) D
occur(take_pardon(p), f) -illegal(p,«) 2
occur(bad_grade(p), ) —~good_employee(py) 3
occur(good_grade(p),t) good_employee(py) (@]

tis a temporal variable and occur(misdemeanotpheans that the action misdemeanor(t) takes place
at time t. The following integrity constraints debe the indirect effects of the four aforementione
actions.

illegal(p, t1)> suspended(p, t1) 5)
illegal(p,t1)> - take_promotion(p, t1) (6)
suspended(p, tD - take_salary(p, t1) @)
- good_employee(p, tH) - take_promotion(p, t1) 8
- suspended(p, t1) good_employee(p, t2) take_bonus(p, min(t1,t2)) 9
- good_employee(p,tD - take_bonus(p, t1) (20)
- suspended(p, tI) take_salary(p, t1) 1y

Temporal Description Logics Representation of titedrity Constaints:

O (x) (starts now x) (month x) (= x 5Employee: Misdemeana *Employee: lllegal@x) (D]
OF (X) (startsnow x) (xEmployee: Take_pardam xEmployee: - lllegal@Xx) 2



O1 (x) (startsnow x) (xEmployee: Bad_grade *Employee:~Good_employee @x) (©)]
&1 (x) (startsnow x) (xEmployee: Good_grade xEmployee: Good_employee@Xx) (@]

Also we have got the followinigtegrity constraints describing théndirect effects of the
aforementioned actions.

*Employee:lllegaE xEmployee:Suspended 5)
*Employee:lllegaE xEmployee: -Take_promotion (6)
*Employee:Suspended *Employee: -Take_salary @)
*Employee: - Good_employeexEmployee: -Take_promotion 8
OF (x y z)(tarts now x)(starts now y)( = z min(x, y)) ¢Employee: ~Suspended@x*Employee:

Good_employee@¥ *Employee: Take_bonus@z) 9
*Employee:=Good_employee xEmployee:~Take_bonus (10)
*Employee:-Suspended xEmployee: Take_salary (11)

In Temporal Settings we need to describe the damdtindirect effects of an action, not only in the
immediately resulting next situation, but possifdy many future situations. In the above examgie, t
action Misdemeanor has the indirect effect that ghblic worker is in suspension in the next five
months. In these five months the action Good_gradg occur, but even if that happens, the employee
still cannot take promotion. This means that theldvohanges situations while the direct and indirec
effects of some actions still hold. In the abovaragle the dynamic axioms are the (1) — (4), wiike t
static axioms are the rest (5) — (11). We haveddhewing default axioms:

OF (xy) (starts now x)@Etarts now y) (= x 0) ¢Employee: lllegal@x1 *Employeexlllegal@xE
*Employee:=lllegal@y)

Ot (x y) (starts now x)@Etarts now y) (= x 0) ¢Employee: Take_salary@x *Employee:
-Take_salary@x xEmployee: Take_salary@y)

O (x y) (starts now x)@Etarts now y) (= x 0) ¢Employee: Suspended@x*xEmployee:
—Suspended@% *Employee:~Suspended@y)

a. Algorithmsfor the Production of Static Rules

The static rules can be used to deduct the indafetts of the execution of each action. The it
effects exist due to the presence of integrity traim#ts. Therefore, it is possible to produce ttaic
rules, from the integrity constraints. The follogiralgorithm describes the steps needed for the
aforementioned production.

1. Transform each integrity constraint in its CNF (eomrctive) form. Now each integrity
constraint has the form;@ C,n C;5... N G,
2. Foreachifrom1tondo



Assume C=FUF ... UF,
For each j from 1 to m do
For each k from 1 to m and#j do
if (F;, R) €1 then
R = RU (=K causes ff MR), I=1,...,m, I#), k
3. For each fluent fthe rules have the following form:
IMF; causes [Fif ®
MF’ causes —fFif @’
We change the static rules from the form:
GC K
K E -k
to the form:
G C R
K &= K
where
G =Gu (MK n o)
K=K u (NN o)
4. We replace each rule,& Fywith & (x)(starts now x)(G@x E F,@x )

Now we apply the algorithm to the previous examplest we have to produce the $eln order to
do that, we make use of an algorithm presentedapaéakis and Plexousakis [11]. The algorithm is
however described with Description Logics this time

1. For each fluent e G;, F' € Ky, where GE K; is a specified integrity constraint add the pair
F, F)el
2. Foreach FE G, F € K¢, where G= Ksis a specified constraint do
e If F can change its truth values as the directcei®® an action, then add (F,F’) inlf
F' can change its truth value as a direct effecrofction then add (F,F) In

All the integrity constraints (IC) have the formcAB. We have that:
(lllegal, Suspended | (from IC 5)

(lllegal, —=Take_promotiong | (from IC 6)
(Suspended, -Take_salasy) (from IC 7)
(-Good_employee, -Take_promotiaa) (from IC 8)
(~-Suspended, Take_bonus) (from IC 9)
(Good_employee, Take_bonues) (from IC 9)
(-Good_employee, = Take_bonus) (from IC 10)
(=Suspended, Take_salagy) (from IC 11)

The transformation of integrity constraints in agmjtive normal form (step 1) yields:

*Employee: -lllegall xEmployee: Suspended 5)



*Employee: -lllegall xEmployee: -Take_promotion (6)

*Employee: =SuspendetlxEmployee: -Take_salary @)
*Employee: Good_employae xEmployee: — Take_promotion (8
Ot (x y 2) @arts now x)@tarts now y)(= z min(x,y)*Employee: Suspended@x*Employee:

-Good_employee@y *Employee: Take_bonus@z 9
*Employee: Good_employae xEmployee: -Take_bonus (10)
*Employee: Suspended xEmployee: Take_salary (11

In step 2 we estimate all causal relationshipstomgithe atomic parametric featureEmployee”
for better readability.

R ={lllegal causesSuspended if, lllegalcauses-Take_promotion iff,
Suspendedauses-Take_salary iff, ~Good_employeeauses-Take_promotion iff,
Good_employeeauseslake_bonus if ~Suspended,

=Suspended causes Take_bonus if Good_employee,
-Good_employeeauses-Take_bonus iff, -SuspendedausesTake_salary ifT}.

In the following step (step 3), we construct theefit formulas, which make each fluent true. In case
that there are more than one causal relationslifpstiag the same fluent, we integrate them in this
step. Take for example the second and fourth caeksdlonships from step 2.

R = {lllegal = Suspended,

lllegal U -Good_employe& —Take_promotion,
Suspended= -Take_salary,

=Suspended Good_employee Take_bonus,
-Good_employe& -Take_bonus,
-Suspended Take_salary }.

Finally in step 4 (which must be exectued, at ganh point, at which the static rules are evalupted
we have the following six static rules:

R = {1 (X)(starts now x)(<Employee: lllegal@ye *Employee: Suspended@x),

Ot (x y 2)tarts now x)@tarts now y)(= z max(x,y)¥Employee:lllegal@xu *Employee:
-Good_employee@¥ *Employee: -Take_promotion@z),

OF (x )(starts now x)(kEmployee: Suspended@x*Employee: -Take_salary@x),

OF (x y z)(tarts now x)@tarts now y)( = z min(x, y)) fEmployee: ~Suspended@xxEmployee:
Good_employee@¥% *Employee: Take_bonus@z),

&1 (x)(starts now x)(<Employee: - Good_employee@x*xEmployee: ~Take_bonus@x),

OF (x)(starts now x)(<Employee: ~Suspended@x*Employee: Take_salary@x) }.

In step 4, for each static rule, we find the maximtime that its body is true. For example in the
second rule, the body is true when lllegal@xGood_employee@y is true. This means that we take



the maximum of times x, y for which ~Take_promotientrue. On the fourth rule, the body is true
when =Suspended@x Good_employee@y is true. This means that we naket the minimum of
times X, y.

b. Algorithmsfor the Evaluation of Dynamic and Static Rules
In this section we present an algorithm for thel@ation of rules:

1. After the execution of one action evaluate the dyicaule which references at this action.
2. Each time moment do:
a. Evaluate the default axioms
b. Repeat until no change occurs
i. Evaluate all static rules
i. Ifafluento™ (ax)Eartsa x)(F@x) becomes true after the evaluation of a
static rule, then seb* (a y)@tartsa y)(= y 0)( -F@y) (the negation is
false), for the same time interval a as in the joevrule.

Consider the above example with the public workée. have four dynamic rules (1-4) as we have
described in the previous section. Also we havelpred thesix static rules:

OF (x)(starts now x)(xEmployee: lllegal@se rEmployee: Suspended@x),

OF (x y)(starts now x)(starts now y)(= z max(x,y))¢Employee: lllegal@xu *Employee:
-Good_employee @¥% xEmployee: -Take_promotion@z),

OF (x )(starts now x)(*Employee: Suspended@x*Employee: ~Take_salary@x),

OF (x y z)arts now x)(starts now y)( = z min(x, y)) éEmployee: ~Suspended@x*Employee:
Good_employee@¥% *Employee: Take_bonus@z),

OF (X)(starts now x)(*Employee: - Good_employee @x+xEmployee: -Take_bonus@x),

Ot (X)(starts now x)(*Employee: -Suspended@x+Employee: Take_salary@x)

Assume now that we have a public worker (employ&g)and the initial situation is:

S ={<OT (x) (starts now X)&E :~Take_bonus@xE:Take_salary@xE: ~Take_promotion@x»E:
aSuspended@xE: -Good_employee@xE: -lllegal@x )}

Time starts at 0 and has the granularity of moAgsume that the following actions occur at the
following time points:

*E: Good_grade@2
*E: Misdemeanor@4
*E: Bad_grade@6



*E: Good_grade@8
*E: Misdemeanor@ 10
*E: Take_pardon@12

At time point 2 the action Good_grade executes.ofdiog to the algorithm for the evaluation of
dynamic and static rules, after the evaluationyofashnic rule (4) we have the following situation:

S, = {1 () (starts now X)KE:~Take_bonus@xE:Take_salary@xE: ~Take_promotion@x»E:
aSuspended@xE: Good_employee @x*E: -lllegal@x)}

As we observe the following static rule will be mated:

O (x y z)(starts now x)(starts now y)(starts now=z(min(x,y))&E: -Suspended@x +E:
Good_employee @¥ *E: Take_bonus@z)

In the previous rule the (starts now z) could betiemi, as z can be either x or y. Before the action
execution, time interval x has the maximum valuewn). Therefore it is safe to assume that the
minimum time interval among x and y is y, as theetiinterval updated in this rule is y from fluent
Good_employee. Therefore in the above rule z=y.

S, = {< 1 (x) (starts now X)E: Take_bonus@xE:Take_salary@xE: - Take_promotion@x»E:
=Suspended@x»E: Good_employee@xE: -lllegal@x)}

The situation does not change until timepoint 4emwkhe second action (Misdemeanor) takes place
and causes lllegal to become true from the nekn& tnits. From the algorithm for the evaluation of
dynamic and static rules, after the evaluationyofashnic rule(1) we have the situation:

S, = {1 (x y) (starts now x)(starts now y)(= y H :Take_bonus@»E:Take_salary@xxE:

- Take_promotion@xE: -Suspended@xE: Good_employee@XxE: lllegal@y)}
As we observe the following static rules will beatyated:

Ot (X)(starts now x)(xEmployee:lllegal@ye *Employee:Suspended@x),
OF (x)(starts now x)(xEmployee:Suspended@x*Employee: ~Take_salary@x).

X has duration 5 so we get:

OF (X)(starts now x)(= x 5)(<Employee:lllegal@x= *Employee:Suspended@x),
Ot (X)(starts now x)(= x 5)(<Employee:Suspended@x*Employee: ~Take_salary@x),

After the evaluation of the static rules we hawe shuation:



S, = {< 1 (x y) (starts now x)(starts now y)(= y 3 :Take_bonus@xE: ~Take_salary@yxE:
-Take_promotion@xE: Suspended@yE: Good_employee@xE: lllegal@y)}

This situation does not change until the time péinthen the third action (Bad_grade) executes.
From the algorithm for the evaluation of dynamid aatic rules, after the evaluation of dynamierul
(3) we have the situation:

S5 = { <O (xy) (starts now x) (starts now y)(= y IH :Take_bonus@xE: ~Take_salary@yxE:
-Take_promotion@xE: Suspended@yE:~Good_employee@xE: lllegal@y)}

The following static rule:

Ot (X)(starts now x)(*Employee: -Good_employee@x*Employee: ~Take_bonus@x), will be
evaluated and the situation will become:

S; = {< T (x y) (starts now x)(starts now y)(= y 3H:~Take_bonus@xrE:~Take_salary@y,
*xE:~Take_promotion@xE: Suspended@yE: ~Good_employee@xE: lllegal@y )}

This situation does not change until time poinvBen the fourth action (Good_Grade) takes place.
From the algorithm for the evaluation of dynamid atatic rules, after the evaluation of dynamierul
(4), we have the situation:

S ={<OT (xy) (starts now x)(starts now y)(= y WH : ~Take_bonus@xE:-Take_salary@yxE:
-Take_promotion@xE: Suspended@¥yE: Good_employee@xE: lllegal@y )}

No static rule is executed. Therefore the situatioas not change. At time point 9 no action takes

place, but the situation changes because the foltpdefault axioms hold:
OF (xy) (startsnow x)(starts now y) (= x 0) ¢Employee: lllegal@x1 *Employeexlllegal@xE

*Employee:-llilegal@y)

Ot (x y) (starts now x)@tarts now y)(= x 0) éEmployee: Take_salary@x *Employee:
-Take_salary@x ~Employee: Take_salary@y)

O (x y) (starts now x)@Etarts now y) (= x 0) ¢Employee: Suspended@x+xEmployee:
—Suspended@x *Employee:~Suspended@y)

The situation is:

S’ ={ <Ot () (starts now X)KE: —Take_bonus@xE:Take_salary@»E: ~Take_promotion@x,
*E:~Suspended@xE: Good_employee @xE:-lllegal@x)}

Now the static rule:

11



Ot (x y z)(tarts now x)@tarts now y)( = z min(x, y)) ¥Employee:-Suspended@x*Employee:
Good_employee@¥ *Employee: Take_bonus@z), is executed with x=y apdefore z=x=y. After
the evaluation of the rule we have:

S = {< 1 (x) (starts now X)E: Take_bonus@»E:Take_salary@xE:~Take_promotion@»E:
=Suspended@x»E: Good_employee@xE:-lllegal@x)}

At time point 10 the action Misdemeanor executesuiting the situation:

S = {<OF (xy) (starts now x)(starts now y)(= y S)E : Take_bonus@xE:Take_salary@x,
*E:=Take_promotion@xE:~Suspended@xE: Good_employee @x*E: lllegal@y)}

OF (X)(starts now x)(= x 5)¢Employee:lllegal@y= Employee:Suspended@x),
Ot (X)(starts now x) (= x 5)«Employee:Suspended@x*Employee: -Take_salary@x).

Ss = {1 (x y) (starts now x)(starts now y)(= y B)E: Take_bonus@xE: ~Take_salary@y+E:
-Take_promotion@xE: Suspended@¥yE: Good_employee@xE: lllegal@y)}

The last action (Take_pardon) occurs at time ptttThe new situation is

S ={ <O (xy) (starts now x)(starts now y)(= y 3K : Take_bonus@xE: -Take_salary@y+E:
-Take_promotion@xE: Suspended@¥yE: Good_employee@xE:-lllegal@x)}

Finally the situation changes again at time po8tllecause the following default axioms hold:

Ot (x y) (starts now x)(startsnow y)(= x 0) kEmployee: Take_salary@x xEmployee:
-Take_salary@x xEmployee: Take_salary@y)

Ot (xy) (startsnow x)(startsnow y) (= x 0) «Employee: Suspended@x*Employee:
=Suspended@X *Employee: =Suspended@y)

Now the situation is:

Ss = {<OT(x) (starts now x)AE : Take_bonus@»E: Take_salary@x+E: ~Take_promotion@»E:
-Suspended@x»E: Good_employee@xE: -lllegal@x)}

This is the end of execution. As we observe froegét R, for each pair (F, =F) it holds thatrG
Kr = FALSE, when GE F and k & -F. More specifically the set of static rules is:

R= {<>+ (X)(starts now x)(xEmployee: lllegal@> xEmployee: Suspended@x),
oF (x y z)(gtartsnow x)(starts now y)(= z max(x,y))¢Employee:lllegal@>xu xEmployee:
-Good_employee@¥ *Employee: -Take_promotion@z),



OF (x )(starts now x)(*Employee: Suspended@x*Employee: ~Take_salary@x),

OF (x y z)(tarts now x)(starts now y)( = z min(x, y)) ¢Employee:-~Suspended @x*Employee:
Good_employee@¥ *Employee: Take_bonus@z),

Ot (X)(starts now x)( *Employee: ~ Good_employee @xxEmployee:~Take_bonus@x),

Ot (X)(starts now x)(L E xEmployee:~Suspended @x),

OF (x)(starts now x)(L E xEmployee: Take_promotion@x)

Ot (X)(starts now x)(L E xEmployee: lllegal@Xx)

OF (x)(starts now x)(L E *Employee:-lllegal@x)

}, where L is the symbol for FALSE.

As we observe, for the fluent that there is ndiasisrule, we add the rule FALSE F, because they
cannot become true by static rules, but only byadyie rules (this means that the truth value changes
only as the direct effect of some action). Now \aed

Ot (x y)(starts now x)(starts now y)( (*Employee: ~Suspended@x+Employee:
Good_employee@y) xEmployee:-~Good_Employee@x) for (Take_bonus, —~Ta&euf)

Ot (x y)(startsnow x) (xEmployee: Suspended@x*Employee: ~Suspended@x) for (Take_salary,
-Take_Salary)

Ot (x)(starts now x)(xEmployee:lllegal@x 1) for (Suspended, -Suspended)

OF (x y)(starts now x)(starts now y)((xEmployee:lilegal@xu *Employee: ~Good_employee @)
1) for (Take_promotion, -Take_promotion)

1 n 1 for (lllegal, -lllegal)

This assumption @1 K¢ = L is very important in order to ensure that, alwafter the execution of
action there is a consistent situation. Now we shgth an example, that if this assumption does not
hold, the situation is not consistent after theceien of some sequence of actions.

Consider the above example with the public worked assume that there is another integrity
constraint specifying that when a public worke&Gsod_employee, then s/he takes promotion. Now the
set of static rules is:

R = {1 (x)(starts now x)(xEmployee:lllegal@ye *Employee:Suspended@Xx),

Ot (x y 2)tartsnow x)(starts now y)(= z max(x,y))éEmployee:lllegal@xu *Employee:
-Good_employee@¥ *Employee: -Take_promotion@z),

OF (x ) (starts now x)(*Employee:Suspended@x*Employee: ~Take_salary@x),

OF (x y z)(tarts now x)(starts now y)( = z min(x, y)) ¢Employee: ~Suspended@xxEmployee:
Good_employee@¥ *Employee: Take_bonus@z),

OF (X)(starts now x)(*Employee: - Good_employee @x+xEmployee: -Take_bonus@x),

OF (x)(starts now x)(*Employee: ~Suspended@x*Employee: Take_salary@x),

OF (x)(starts now x)(xEmployee: Good_employee @x*Employee: Take_promotion@x)
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As we observe for the pair (Take_promotion, -Takenmtion), the above assumption does not
hold, because

OF (X)(starts now x)(starts now y)(Good_employee@x(lllegal@x L ~Good_employee@y Ban
be true wherGood_employee lllegal holds.

Assume now that we have a public work&rand the initial situation is:

S ={< T (x) (starts now x){E:~Take_bonus@xE:Take_salary@xE:~Take_promotion@»E:
=Suspended@x»E:~Good_employee@xE:-lllegal@x)}

As we have mentioned before, x has the maximumevpdassible for a future time interval which is
[now, o). Assume that the following actions occur at tbikofving time points, assuming time starts at
0 and time granularity is that of months

Misdemeanor@4
Good _grade@6

At time point 4 after the execution of the actioistemeanor we have the situation:

S/’ = {7 (x) (starts now x){E:~Take_bonus@xE:Take_salary@xE: ~Take_promotion@»E:
aSuspended@xE: -Good_employee @x%E: lllegal@x)}

After the evaluation of the static rules we have:

S, = {O1 (x) (starts now x) AE:-Take_bonus@x+E:~Take_salary@x+E: ~Take_promotion@x,
*E: Suspended@xE: -Good_employee@xE: lllegal@x)}

At time point 6, after the execution of the act®ood_grade we have the situation:

S, = {OF (x) (starts now x) AE:~Take_bonus@x+E:—Take_salary@xE:—Take_promotion@Xx,
*E: Suspended@xE: Good_employee@xE: lllegal@x)}

Now the static rule Of(x)(starts now x)(*Employee: Good_employee@% *Employee:
Take_promotion@x) must be evaluated, and after fhate promotion@x must hold. But if
Take_promotion@x holds, then we must examine ifstagic rule> " (x y z)(starts now x)(starts now
y)(= z max(x,y))«Employee: llegal@x U *Employee:-Good_employee@y £
*Employee:-Take_promotion@z), must be evaluatedolgerve that we must evaluate this static rule
as well. As we see, those two static rules wilelbealuated one after the other for ever (infinitelifis
means that the situation is not consistent. Thigpeaed because there is a mistake in the integrity
constraints, and therefore the above assumptios wlatehold. The algorithm can run without the above
assumption, but we must determine the preconditmfneach action, in order to avoid the above
problem. We have proved the following theorems:



Theorem 1: Each time unit, the algorithm is terminated atrétéi number of steps.
Theorem 2: The above algorithm always returns a legal situatio

4 Conclusion

In this paper we have presented the basics of piser Logics, as well as several approaches to
Temporal Description Logics found in Literature. \&kso presented a Temporal Description Logics
representation, used in a thorough example to agmeith a solution to the ramification problem in
Temporal Settings. In order to accomplish that,present algorithms that utilize Integrity consttain
along with static and dynamic rules, all expressedemporal Description Logics. In this particular
example time intervals are not only variables bart bave enumerated values, in contrast with most
examples found in Literature.

As we showed it is possible to deal with the ragaifion problem with rules and algorithms
expressed in whole in Temporal Description Logi@sr implementation can also work with actions
taking place in the past, by applying the samerdlguns to evaluate static and dynamic rules and to
come up with a consistent situation. The Temporesddiption Logics representation and algorithms
we presented, could also work with non instantoadi(actions with duration).
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