EU-IST Integrated Project (IP) IST-2003-506826 SEKT

SEKT: Semantically Enabled Knowledge Technologies

) % ekt

An Extended DIG Description Logic
Interface for Prolog

Zhisheng Huang and Cees Visser
(Vrije Universiteit Amsterdam)

with contributions from:

Abstract.
EU-IST Integrated Project (IP) IST-2003-506826 SEKT
Deliverable D3.4.1.2 (WP3.4)

This document presents a DIG description logic interface extension for high-level programming
languages like Prolog. The extension introduces the notion of an intermediate server, which pro-
vides both client side and server side processing facilities, i.e. intermediate Prolog-based extended
description logic servers can call a standard DL reasoner that supports the DIG interface, in order
to provide regular DL services to client applications. In addition, such an intermediate server
can also act as an extended DL reasoner, which provides additional reasoning and processing
capabilities to client applications.

Currently, we have implemented the extended DIG DL interface as an SWI-Prolog package. This
document describes the extended framework and discusses several examples to show how it can
be used to develop hybrid Prolog / DL reasoners.

Keywords: Description Logics, DIG interface, Logic Programming, Ontology Management

Document Id. SEKT/2004/D3.4.1.2/v0.5
Project SEKT EU-IST-2003-506826
Date July 5, 2004

Distribution public

Copyright(© 2004 Department of Artificial Intelligence, Vrije Universiteit Amsterdam

SEKT Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the European

Communities as project number IST-2003-506826.

British Telecommunications plc.

Orion 5/12, Adastral Park

Ipswich IP5 3RE

UK

Tel: +44 1473 609583, Fax: +44 1473 609832
Contactperson: John Davies

E-mail: john.nj.davies@bt.com

Jozef Stefan Institute

Jamova 39

1000 Ljubljana

Slovenia

Tel: +386 1 4773 778, Fax: +386 1 4251 038
Contactperson: Marko Grobelnik

E-mail: marko.grobelnik@ijs.si

University of Sheffield

Department of Computer Science

Regent Court, 211 Portobello St.

Sheffield S1 4DP

UK

Tel: +44 114 222 1891, Fax: +44 114 222 1810
Contactperson: Hamish Cunningham

E-mail: hamish@dcs.shef.ac.uk

Intelligent Software Components S.A.
Francisca Delgado, 11 - 2

28108 Alcobendas

Madrid

Spain

Tel: +34 913 349 797, Fax: +49 34 913 349 799
Contactperson: Richard Benjamins

E-mail: rbenjamins@isoco.com

Ontoprise GmbH

Amalienbadstr. 36

76227 Karlsruhe

Germany

Tel: +49 721 50980912, Fax: +49 721 50980911
Contactperson: Hans-Peter Schnurr

E-mail: schnurr@ontoprise.de

Vrije Universiteit Amsterdam (VUA)
Department of Computer Sciences

De Boelelaan 1081a

1081 HV Amsterdam

The Netherlands

Tel: +31 20 444 7731, Fax: +31 84 221 4294
Contactperson: Frank van Harmelen

E-mail: frank.van.harmelen@cs.vu.nl

Empolis GmbH

Europaallee 10

67657 Kaiserslautern

Germany

Tel: +49 631 303 5540, Fax: +49 631 303 5507
Contactperson: Ralph Trapher

E-mail: ralph.traphoener@empolis.com

University of Karlsruhe, Institute AIFB
Englerstr. 28

D-76128 Karlsruhe

Germany

Tel: +49 721 608 6592, Fax: +49 721 608 6580
Contactperson: York Sure

E-mail: sure@aifb.uni-karlsruhe.de

University of Innsbruck

Institute of Computer Science

Techikerstral3e 13

6020 Innsbruck

Austria

Tel: +43 512 507 6475, Fax: +43 512 507 9872
Contactperson: Jos de Bruijn

E-mail: jos.de-bruijn@deri.ie

Kea-pro GmbH

Tal

6464 Springen

Switzerland

Tel: +41 41 879 00, Fax: 41 41 879 00 13
Contactperson: Tomd&sser

E-mail: tbo@keapro.net

Sirma Al EOOD (Ltd.)

135 Tsarigradsko Shose

Sofia 1784

Bulgaria

Tel: +359 2 9768, Fax: +359 2 9768 311
Contactperson: Atanas Kiryakov

E-mail: naso@sirma.bg

Universitat Autonoma de Barcelona

Edifici B, Campus de la UAB

08193 Bellaterra (Cerdanyola del \&d))
Barcelona

Spain

Tel: +34 93 581 22 35, Fax: +34 93 581 29 88
Contactperson: Pompeu Casanovas Romeu
E-mail: pompeu.casanovasquab.es

Changes

| Version) Date | Author | Changes
0.1 16.6.04| Zhisheng Huang Creation
0.2 24.6.04 | Zhisheng Huang First Draft
0.3 26.6.04| Cees Visser Second Draft
0.4 1.7.04 | Zhisheng Huang Some Changes
0.5 5.7.04 | Zhisheng Huang Changes based on new libraries

Executive Summary

The DIG description logic interface is a convenient high-level interface for DL reasoners.
The interface is supported by most DL reasoners and easily allows for the construction of
reusable software components.

Logic programming languages like Prolog are popular in Al. In this document we
investigate how to enhance Prolog with DL reasoning support, to be used in several Se-
mantic Web contexts. In particular we discuss an extended DIG Description Logic in-
terface which defines both client side and server side processing functionalities for an
intermediate server.

As a regular DIG DL client, intermediate Prolog-based servers can call external DL
reasoners that support the DIG interface. In addition, from a client application point of
view, an intermediate server can effectively act as an extended DL reasoner, which can be
used to provide additional reasoning facilities.

We have currently implemented an extended DIG DL interface in SWI-Prolog and will
give a detailed description of its functionality. Several examples will demonstrate how
this extended DIG framework can be used to develop more powerful hybrid reasoning
and processing components.

Contents

1 Introduction

2 The Prolog Extended Description Logic Interface

2.1 TheDIGDLInterface
2.2 General Considerations
2.3 Architecture Overview

3 Prolog Extended DL Interface Libraries

3.1 library(dig/digclient)
3.2 library(dig/digserver)
3.3 library(dig/digprocess) oL
3.4 library(dig/digdb)
3.5 library(dig/digclientsetting)
3.6 Implementation

4 Examples

4.1 Forwarding Strategy
4.2 Accumulation Strategy
4.3 Query ProcessingExamples
4.3.1 Query Type Processing
43.2 QueryIDProcessing
4.4 ExtendedDIGProcessing.

5 Conclusions

Chapter 1

Introduction

The DIG description logic interface [2], DIG interface for short, which is defined by
the Description Logic Implementation Group (DfGprovides a convenient high-level
interface for DL reasoners. Many DL reasoners support the DIG interface and therefore
more easily allow for the construction of highly portable and reusable components or
extensions.

Logic programming languages in general, and Prolog in particular, are popular pro-
gramming languages in Al, since they incorporate a high-level inference engine in their
runtime system. Therefore, it is worthwhile to investigate the enhancement of a language
like Prolog with DL reasoning facilities, to be used in for example Semantic Web contexts
[5, 6,7, 9].

In this document, we describe a DIG DL interface extension that, from a client appli-
cation point of view, defines both DL reasoner services and special purpose services as
provided by an intermediate extended description logic server ; as a regular DIG client,
an intermediate server can call an external DL reasoner which supports the DIG interface.

The extended description logic interface has been implemented as a package for SWI-
Prolog, a popular free Prolog systémAe will describe the extended description logic
interface for SWI-Prolog in detail. Furthermore, we discuss several examples to show
how additional services can be realized by using this interface package.

This document is organized as follows: Chapter 2 presents the design of the extended
description logic interface. Chapter 3 describes the interface libraries in detail. Chapter
4 discusses several examples that illustrate how these libraries can be used. Chapter 5
concludes the document.

http://dl.kr.org/dig/
2http://www.swi-prolog.org

Chapter 2

The Prolog Extended Description Logic
Interface

2.1 The DIG DL Interface

The DIG interface is defined as a simple API for a general description logic system[2]. It
uses a similar mechanism as SOAP (Simple Object Access Protocol), which has XML-
based messaging protocols on top of HTTP.

Clients of a DL reasoner communicate through the use of HTTP POST requests. The
body of the request is an XML encoded message which corresponds to the DL concept
language. The DIG concept language is a description logic that includes the standard
boolean concept operators, universal and existential restrictions, and other issues. A
TELL request is used to assert DL statements in the knowledge base of the DL reasoner.
An ASK request is used to perform knowledge base queries. In addition, management
requests are used to maintain the knowledge base of DL reasoners or to obtain particular
information of the system, like a reasoner identification. See [2] for more DIG description
logic interface details.

2.2 General Considerations

The Prolog extended DIG interface libraries may be used to build DL reasoners that have
additional reasoning capabilities, like reasoning about possible inconsistent ontologies, a
working task in the SEKT project[4]. It is not necessary for extended Prolog-based DL
reasoning systems to incorporate their own DL reasoning component; several well-known
DL reasoners exist (e.g. Racer[3]) and an extended DL reasoner will access an existing
external reasoner via its DIG interface.

In general, extended DL reasoners should be able to serve as a regular DL reasoner via

CHAPTER 2. THE PROLOG EXTENDED DESCRIPTION LOGIC INTERFACE 4

Applications

Extended DIG DL Reasoner

DIG Server

Main
Control Internal
Component
P Knowledge

Base

DIG Client

External DL Reasoner

Figure 2.1: Architecture

their corresponding DIG description logic interface. Moreover, they will provide partic-
ular supplementary reasoning facilities. An intermediate extended DIG server can make
systems independent of particular application specific characteristics, which significantly
improves the reusability and applicability of software components; a highly decoupled
infrastructure is usually beneficial for the construction of domain-specific services.

2.3 Architecture Overview

The general architecture of a Prolog-based extended DIG reasoner is shown in Figure 2.1.
It consists of the following components:

e DIG Server: The DIG server deals with requests from ontology applications. It
supports the extended DIG interface, i.e. it not only supports standard DIG/DL
requests, like 'tell’ and 'ask’, but also additional processing features, like the spec-
ification or modification of selection functions, etc.

CHAPTER 2. THE PROLOG EXTENDED DESCRIPTION LOGIC INTERFACE 5

e Main Control Component: The main control component implements the general
processing framework, like query analysis, query pre-processing, and the extension
strategy, by calling the selection function and interacting with the ontology reposi-
tories.

e DIG Client: The regular DIG client layer calls the external DL reasoner in order to
access the standard DL reasoning capabilities.

e Internal KB : The internal knowledge base is used to store DL statements
locally for the Prolog/DL reasoner. More exactly, it consists of a set of
dig_db_element(+1D,?Element) facts wherel D specifies additional informa-
tion, say version information, about the element list. These facts are used for further
processing when the reasoner receives an ASK request.

Chapter 3

Prolog Extended DL Interface Libraries

The Prolog Extended DL package consists of the following libraries: ctiemnt,
dig_server, digprocess, diglb, and digclient setting. SWI-Prolog requires this pack-
age to be installed in the ’library/dig’ directory.

3.1 library(dig/dig _client)

The library(dig/digclient) provides the mechanism to call an external DL reasoner, i.e.
DIG DL servers on remote hosts. It defines the following predicates:

e dig_post(+Data, -Reply, +Options)
post the data to the default external DIG server witltions that are permitted by
the HTTP POST request. The data format can have one of the following forms:

— file(FileName)
data is provided by fil&ileName

— text(XMLText)
data is represented as XML-encoded text;

— elements(Elements)
data is represented as a list of XML-parsed elements, see predicate
load xml_file of the SWI-Prolog SGML/XML parser package[8] for details.
An XML-parsed element list is the main data format in the Prolog extended
DL interface libraries.
The replyReplyfrom a DIG server has the form anwer(Header, Elements)
whereHeaderis the header of the response @Blémentsan XML element
list which corresponds to the body of the DIG server response.

e dig_post(+URL, +Data, -Reply, +Options)
similar to the predicate digost/3, however, with the URL of the external DIG

6

CHAPTER 3. PROLOG EXTENDED DL INTERFACE LIBRARIES 7

server.

e dig_post(+Protocol, +Host, +Port, +Path, +Data, -Reply, +Options) similar to the
predicate digoost/4, however, the URL is explicitly specified by means of the pa-
rameterdProtocol, Host, PorandPath

e dig_tell(+Elements, -Answer, +Options)
post the list ofElementswith the tag 'tells’ to the default DIG server.

¢ dig_ask(+Elements, -Answer, +Options)
post the list ofElementswith the tag 'asks’ to the default DIG server.

3.2 library(dig/dig _server)

The library library(dig/digserver) provides a mechanism to build a Prolog DL system
which supports the extended DL interface. It defines the following predicates:

e dig_server(+Request)
process a client'Requestlt serves as the main entry point for the server, which is
launched by an httgerver process. Prolog extended DIG server developers have to
define their own predicateny_dig_server_processing+Data, -Answer, +Options)
in order to handle the corresponditgta (i.e. the body of a request without a
header) andAnswer See Chapter 4 for examples how to define a predicate like
my_dig_server_processing

¢ dig_standard_responsé+Status, +ID, -Answer)
provide a standard answer f6tatus and requesf D. The Statuscan be one of
ok, true, or false.
As an extension of the request support, the Prolog extended DIG server library
not only supports XML-encoded request data which is posted with content
type ‘text/xml’, but also supports the content type ’application/x-www-form-
urlencoded’. The latter is used to post DIG interface data from an HTML form.
A general requirement for the latter is that the posted data must be identified by
'dig_xml_data’.

The following predicates can be used to get or set server characteristics, like
the server’s ID or the port number:

e dig_server_port(-Port)
e dig_server.id(-DIGServerID)

e setdig_server_port(+Port)

CHAPTER 3. PROLOG EXTENDED DL INTERFACE LIBRARIES 8

e setdig_server.id(+DIGServerID)

A Prolog extended DIG server can be launched from a Prolog program by means of:

.- http_server(dig_server,[port(8001)]).

3.3 library(dig/dig _process)

The library(dig/digprocess) provides the main predicates to process DIG messages. It
defines the following predicates:

¢ dig_add_elementg+Elements, +Type, -ElementsWithType)
add the taglypeto Elementsresulting in a list oElementsWithType

e xml_elementg+RawText, -XMLElements, -Header)
translate a raw text reply from the server into a body with a list of elements and a
text header.

e elementsxmltext(+XMLElements, -XMLText)
translate a list of XMLElements to an XML-encoded text.

¢ dig_requestdataanalysi{+RequestData, -Data, -Type)
get theData body from Request Data with type T'ype, whereType can be one of
- asks, tells, getldentifier, etc.

¢ dig_data analysig+Data, +Type, -Element, -OtherData)
select anFElement of type Type (e.g. ’satisfiable’) fromData, resulting in
Other Data without Element.

e dig_responseanalysig+Response, ?Type, -Element, -OtherData)
select anElement of type Type (e.g. ’true’ or 'false’) from the element list
Response which is usually defined by aanswer(Header, Response) from the
external DL reasoner, resulting @ her Data without Element.

e dig_xmIns(XMLNameSpace): get the DIG XML namespace list

¢ dig_tmp_working _file(Type, FileName) specifies the filename of a temporary file.

3.4 library(dig/dig db)

The library(dig/digdb) provides facilities to maintain the internal knowledge base of the
extended Prolog DL system. It defines the following predicates:

CHAPTER 3. PROLOG EXTENDED DL INTERFACE LIBRARIES 9

e dig_assertdata(+ID, +Data)
assert a data statement into the knowledge base with idertifieThe default’ D
is general

e dig_db_elemen(+ID, ?Element)
check or get aftlementrom the knowledge baskéD.

e dig_db_post(+ID, +AdditionalOptions, -Answer, +Options)
post the entire knowledge bagé and Options with the AdditionalOptions,
whereAdditionalOptions is eitherwithClear K B or withoutClear K B.

¢ dig_clear_data(+ID)
clear the knowledge bade.

3.5 library(dig/dig _client_setting)

The library(dig/digclient_setting) can be used for the settings of the corresponding exter-
nal DL server, i.e., the DIG client. It consists of the following predicates:

e dig_host(-Host): get theH ost of the external DIG server
e dig_port(-Port): get thePort of the external DIG server
e dig_path(-Path): get thePath of the external DIG server
e setdig_host(-Host): set thef{ ost of the external DIG server
e setdig_port(-Port): set thePort of the external DIG server
e setdig_path(-Path): set thé’ath of the external DIG server

e dig_url (-URL): get the default URL of the external DIG server.

3.6 Implementation

The Prolog extended DIG interface has been implemented in SWI-Br@ugl-Prolog is

a free software Prolog compiler. Being free, small and mostly standard compliant, SWI-
Prolog has become very popular for education and research. The SWI-Prolog extended
DIG library packages are available from http://wasp.cs.vu.nl/sekt/dig.

http://www.swi-prolog.org

Chapter 4

Examples

In this chapter we will show a number of examples that demonstrate how the extended
DIG libraries can be used to build Prolog/DL reasoners according to different strategies.

4.1 Forwarding Strategy

This is the most straightforward example of a Prolog DL reasoner; the Prolog DL reasoner
forwards each client request to the external DL reasoner and each reply of the external DL
reasoner is sent back to the client application.

The strategy can be defined by the predicate_tlity serverprocessing’ as illustrated
in the following program:

:-use_module(library('dig/dig_client")).
:-use_module(library('dig/dig_server’)).
:-use_module(library(http/thread_httpd’)).

my_dig_server_processing(RequestData, Answer, Options):-
dig_post(RequestData, Answer, Options).

:- dig_server_port(Port),
http_server(dig_server, [port(Port)]).

The message flow of this forward strategy is shown in Figure 4.1.

4.2 Accumulation Strategy

In the accumulation strategy, the Prolog DL reasoner accumulates all statements from
TELL requests in internal knowledge bases until an ASK request is received, after which

10

CHAPTER 4. EXAMPLES 11

Applications

[Prolog DL Reasoner

DIG Server

Main

Control
Component 71 1 Y
—{)
i < 4
[© DIGClient |

4

External DL Reasoner

Figure 4.1: extended DIG Message Forwarding

the Prolog DL reasoner 'tells’ the external DL reasoner the accumulated data, and per-
forms the corresponding external DL reasoner query.

The strategy can be defined by means of the predicatedigngerverprocessing’ as
shown in the following Prolog program:

:-use_module(library('dig/dig_client")).
:-use_module(library('dig/dig_server’)).
:-use_module(library('dig/dig_process’)).
:-use_module(library('dig/dig_db’)).
:-use_module(library(’http/thread_httpd’)).

%deal with the tell request

my_dig_server_processing(RequestData, Answer, [connection(close)]):-
dig_requestdata_analysis(RequestData, Data, Type),
Type=tells,
|
dig_assert_data(general, Data),
dig_standard_response(ok, _ID, Answer).

%deal with the ask request
my_dig_server_processing(RequestData, Answer, _Options):-
dig_requestdata_analysis(RequestData, _Data, Type),
Type=asks,
|

dig_db_post(general, withClearKB, _Answer, [connection(close)]),
dig_post(RequestData, Answer, [connection(close)]).

%deal with other request
my_dig_server_processing(RequestData, Answer, Options):-

CHAPTER 4. EXAMPLES

12

Applications
L. ask

Prolog DL Reasoner

HjSk DIG Server
3

Main
Control
Component

tellfask

/[Internal
KBs

g _db_pos

DIG Client |

\
|
/

ite]]fask

External DL Reasoner

Figure 4.2: Accumulation Strategy

dig_post(RequestData, Answer, Options).

.- dig_server_port(Port), http_server(dig_server,[port(Port)]).

The message flow that corresponds to this strategy is shown in Figure 4.2.

4.3 Query Processing Examples

Usually an intermediate Prolog/DL reasoner wants to perform some pre-processing with
respect to client application requests. For example, a Prolog DL reasoner may want to
filter particular types of queries and ignore other request types. Alternatively, a Prolog
DL reasoner may want to select queries with a particular ID for further processing. In the
following, we will show several examples how queries can be pre-processed when using

the Prolog DIG packages.

4.3.1 Query Type Processing

The next program fragment shows how a satisfiability query is selected in an ASK request.

:-use_module(library('dig/dig_client")).
:-use_module(library('dig/dig_server)).
:-use_module(library('dig/dig_process’)).
:-use_module(library('dig/dig_db’)).

CHAPTER 4. EXAMPLES 13

:-use_module(library(http/thread_httpd’)).

%deal with the ask request, select a satisfiability query only.
my_dig_server_processing(RequestData, Answer, _Options):-
dig_requestdata_analysis(RequestData, Data, Type),
Type=asks,
dig_data_analysis(Data, satisfiable, E, _OtherData),
dig_ask(elements([E]), Answer, [connection(close)]).

%handle other requests
my_dig_server_processing(RequestData, Answer, Options):-
dig_post(RequestData, Answer, Options).

:- dig_server_port(Port),
set_dig_server_id('SWI-Prolog XDIG Server (Satisfiability Queries Only)),
http_server(dig_server,[port(Port)]).

We use the predicat®g_data_analysis(Data, satis fiable, E, _Other Data) to ob-
tain a satisfiability queryE, after which we perform an ASK request on the se-
lected element listZ' to the external DL reasoner via the DIG client. The predicate
set_dig_server_id is used to set a description of the Prolog extended DIG server.

4.3.2 Query ID Processing

In the following example, the reasoner selects queries that contain an ID 'myquery’ in the
ASK request.

%select queries with ID 'myquery’
my_dig_server_processing(RequestData, Answer, _Options):-
dig_requestdata_analysis(RequestData, Data, Type),
Type=asks,
E = element(_Type, [id='myquery’], _C),
dig_data_analysis(Data, _, E, _OtherData),
dig_ask(elements([E]), Answer, [connection(close)]).

%deal with the error message

my_dig_server_processing(RequestData, Answer, _Options):-
dig_requestdata_analysis(RequestData, Data, Type),
Type=asks,
Answer=answer(_, text(’<error description="cannot find myquery"/>’)).

%handle other requests
my_dig_server_processing(RequestData, Answer, Options):-
dig_post(RequestData, Answer, Options).

CHAPTER 4. EXAMPLES 14

We useE = element(_Type, [id =" myquery'], _C) to specify the element with ID
'myquery’ and use the predicatieg_data_analysis(Data, _, E, Other Data) to retrieve
the corresponding element from the data. Upon failure, the error message 'cannot find
myquery’ is displayed.

4.4 Extended DIG Processing

We can use the Prolog DIG interface package to extend the capabilities of the standard
DIG DL interface so that it can deal with additional operators (i.e. tags). For example,
we can define a Prolog server which can deal with the operator 'entailment’ in an ASK
request. We know that entailment can always be transformed into satisfiability. The
relationship between entailment and satisfiability is given by:

Y = ¢iff XU {—¢} is not satisfiable.

Namely, a formula set entails a formulap if and only if the sef: U {—¢} is not satisfi-
able.

We can define the predicate 'miig_serverprocessing’ in a Prolog-based server as
follows:

my_dig_server_processing(RequestData, Answer, _Options):-
dig_requestdata_analysis(RequestData, Data, Type),

% ASK request
Type=asks,

% get the entailment data
dig_data_analysis(Data, entailment, E, _OtherData),

% deal with the query ID
(E = element(entailment, [], E1), ID="NIL" ;
E = element(entailment, [id=ID], E1)),

% construct the negation of the query (satisfiabilty check)
dig_add_elements(E1, not, E2),
dig_add_elements(E2, satisfiable, E3),

% post the satsifiability query to the external DL reasoner
dig_ask(elements(E3), Answerl, [connection(close)]),

% analyse the answer, the answer for the entailment is
% always the opposite of the answer for the satisfiability
% check.

Answerl = answer(_Header, AnswerBody),
dig_response_analysis(AnswerBody, Typel, _Element,_O),
opposite(Typel, Type2),

dig_standard_response(Type2, ID, Answer).

CHAPTER 4. EXAMPLES

opposite(true, false).
opposite(false, true).

15

Chapter 5

Conclusions

In this document, we have defined an extended DIG Description Logic interface for Pro-
log, and outlined the corresponding architecture of this interface. The DIG interface ex-
tension defines both client side and server side processing for an intermediate server.
Client applications as well as intermediate extended DIG servers can access external DL
reasoners, and intermediate servers may provide additional reasoning capabilities.

In addition, several examples illustrate how the Prolog extended DIG package can
be used to develop an infrastructure for hybrid Prolog/DL semantic web systems. The
main objective of the presented approach was to re-use existing DL reasoners and to pro-
vide a modular architecture in order to be able to incorporate domain-specific processing
facilities.

16

Bibliography

[1] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, Peter Patel-

2]

Schneider, (eds.)The Description Logic Handbook Theory, Implementation and
Applications Cambridge University Press, Cambridge, UK, 2003.

Sean Bechhofer, Ralf Mller, and Peter Crowther. The DIG Description Logic Inter-
face. In DL2003 International Workshop on Description Logics, Rome, September
2003.

[3] Wolker Haarslev, and Ralf Nller, Description of the RACER System and its Ap-

[4]

[5]

plications, Proceedings of the International Workshop on Description Logics (DL-
2001), Stanford, USA, 1.-3. August 2001, pp. 132-141.

Zhisheng Huang, Frank van Harmelen, Annette ten Teije, Perry Groot, and Cees
Visser, Reasoning with Inconsistent Ontologies: a general framework, SEKT report
D3.4.1.1, 2004.

Maarten Menken, Prolog Sesame Client, VUA, 2003. http://www.cs.vu.nl/
~mrmenken/prologsesame

[6] Jan Wielemaker, SWI-Prolog/XPCE Semantic Web Library, http://www.swi-

prolog.org/packages/semweb.html.

[7] Jan Wielemaker, The SWI-Prolog RDF parser, http://www.swi-

prolog.org/packages/rdf2pl.html.

[8] Jan Wielemaker, The SWI-Prolog SGML/XML parser, http://www.swi-

prolog.org/packages/sgmi2pl.

[9] Jan Wielemaker, Guus Schreiber, Bob J. Wielinga, Prolog-Based Infrastructure for

RDF: Scalability and Performance. International Semantic Web Conference 2003,
pp. 644-658.

17

